Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morpho...Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.展开更多
Monotungsten carbide and titania nanocomposite with core-shell(WC@TiO2)structure was prepared by a new approach of spray drying and reduction-carbonization reaction,with titania nanopowder and ammonium metatungstate...Monotungsten carbide and titania nanocomposite with core-shell(WC@TiO2)structure was prepared by a new approach of spray drying and reduction-carbonization reaction,with titania nanopowder and ammonium metatungstate as precursors,methane as carbon source,and hydrogen as reduction gas.The sample was characterized by X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope and X-ray energy dispersion spectroscopy.The results show that its crystal phase is composed of brookite,tungsten and monotungsten carbide.The morphology of the sample particle is irregular sphere-like,with a diameter smaller than 100 nm.Its chemical components are titanium,tungsten,carbon and oxygen.Monotungsten carbide nanoparticles lie on the surface of titania core and form an incomplete shell around titania core in the nanocomposite.The measurement with a microelectrode system of three electrodes shows that the sample is electrocatalytic active to nitrophenol in basic solution at room temperature.Its peak potential is at0.988 V(vs saturated calomel electrode (SCE)),which is more negative than the peak potential,0.817 V(vs SCE),of mesoporous monotungsten carbide, and its peak current is 8.809μA,which is higher than the peak current,4.058μA,of mesoporous monotungsten carbide.The hydrogen generation potential of the sample is at1.199 V(vs SCE),which is more negative than that of pure nanosized monotungsten carbide at1.100 V(vs SCE).These results show that the presence of titania in the sample can lower the peak potential of nitrophenol electrocatalysis and its hydrogen generation potential,and increase its peak current of nitrophenol electrocatalysis in basic solution at room temperature.This indicates a synergistic effect of titania and monotungsten carbide in electrocatalysis.展开更多
文摘Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.
基金Supported by the National Natural Science Foundation of China(20476097) the Zhejiang Natural Science Foundation(Y4080209 Y406094)+1 种基金 the Science Plan of Zhejiang Province(2007F70039) the Scientific Starting Fund of Zhejiang University of Technology
文摘Monotungsten carbide and titania nanocomposite with core-shell(WC@TiO2)structure was prepared by a new approach of spray drying and reduction-carbonization reaction,with titania nanopowder and ammonium metatungstate as precursors,methane as carbon source,and hydrogen as reduction gas.The sample was characterized by X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope and X-ray energy dispersion spectroscopy.The results show that its crystal phase is composed of brookite,tungsten and monotungsten carbide.The morphology of the sample particle is irregular sphere-like,with a diameter smaller than 100 nm.Its chemical components are titanium,tungsten,carbon and oxygen.Monotungsten carbide nanoparticles lie on the surface of titania core and form an incomplete shell around titania core in the nanocomposite.The measurement with a microelectrode system of three electrodes shows that the sample is electrocatalytic active to nitrophenol in basic solution at room temperature.Its peak potential is at0.988 V(vs saturated calomel electrode (SCE)),which is more negative than the peak potential,0.817 V(vs SCE),of mesoporous monotungsten carbide, and its peak current is 8.809μA,which is higher than the peak current,4.058μA,of mesoporous monotungsten carbide.The hydrogen generation potential of the sample is at1.199 V(vs SCE),which is more negative than that of pure nanosized monotungsten carbide at1.100 V(vs SCE).These results show that the presence of titania in the sample can lower the peak potential of nitrophenol electrocatalysis and its hydrogen generation potential,and increase its peak current of nitrophenol electrocatalysis in basic solution at room temperature.This indicates a synergistic effect of titania and monotungsten carbide in electrocatalysis.