Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at t...Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.展开更多
Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated...Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated. In these simulations we consider the influence of tidal stresses using the rate- and state-dependent friction laws. Furthermore, the effects on tidal trig- gering due to the stress amplitude and periodic oscillation properties were investigated, and the triggering effects between the tidal normal and tidal shear stresses were compared. The results showed that the Ning'er earthquake sequence was a physical consequence of tidal effects. A transition period To exists between the nucleation and failure processes of a seismic fault. When the period T of stress is equal to or becomes larger than To, the fault response becomes dependent on the periodic features of the loading stress; however, for T 〈 To, the response of the fault is nearly independent of the period. Both the tidal normal and tidal shear stresses have similar effect in the nucleation and failure processes; the clock changes generally increase with the maximum amplitudes of the tidal stresses. Tidal normal and tidal shear stresses with positive amplitudes mainly induce earth- quake triggering; however, the triggering effects induced by negative tidal stresses are smaller and faults are not sensitive to negative tidal stresses. Our results primarily reveal the physical mechanisms of tidal stress triggering.展开更多
基金Project(2008AA01A201) supported the National High-tech Research and Development Program of ChinaProjects(60833004, 60633050) supported by the National Natural Science Foundation of China
文摘Developing parallel applications on heterogeneous processors is facing the challenges of 'memory wall',due to limited capacity of local storage,limited bandwidth and long latency for memory access. Aiming at this problem,a parallelization approach was proposed with six memory optimization schemes for CG,four schemes of them aiming at all kinds of sparse matrix-vector multiplication (SPMV) operation. Conducted on IBM QS20,the parallelization approach can reach up to 21 and 133 times speedups with size A and B,respectively,compared with single power processor element. Finally,the conclusion is drawn that the peak bandwidth of memory access on Cell BE can be obtained in SPMV,simple computation is more efficient on heterogeneous processors and loop-unrolling can hide local storage access latency while executing scalar operation on SIMD cores.
基金supported by the National Natural Science Foundation of China(Grant Nos.4110403641004021)+1 种基金Foundation of Provincial Education Department of Yunnan(Grant No.2014Z009)Foundation of School of Resources&Earth Science in Yunnan University(Grant No.2013CK002)
文摘Based on calculations of the tidal Coulomb failure stress and investigations of the correlation between the Earth tide and the Ning'er earthquake sequence, the processes of fault nucleation and failure were simulated. In these simulations we consider the influence of tidal stresses using the rate- and state-dependent friction laws. Furthermore, the effects on tidal trig- gering due to the stress amplitude and periodic oscillation properties were investigated, and the triggering effects between the tidal normal and tidal shear stresses were compared. The results showed that the Ning'er earthquake sequence was a physical consequence of tidal effects. A transition period To exists between the nucleation and failure processes of a seismic fault. When the period T of stress is equal to or becomes larger than To, the fault response becomes dependent on the periodic features of the loading stress; however, for T 〈 To, the response of the fault is nearly independent of the period. Both the tidal normal and tidal shear stresses have similar effect in the nucleation and failure processes; the clock changes generally increase with the maximum amplitudes of the tidal stresses. Tidal normal and tidal shear stresses with positive amplitudes mainly induce earth- quake triggering; however, the triggering effects induced by negative tidal stresses are smaller and faults are not sensitive to negative tidal stresses. Our results primarily reveal the physical mechanisms of tidal stress triggering.