AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed fo...AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed for detection of HBV genotypes in serum samples from HBV DNA-positive patients in Eastern China. This method is based on the principle of reverse hybridization with Cy5-labeled amplicons hybridizing to type-specific oligonucleotide probes that are immobilized on slides. The results of 80 randomly chosen sera were confirmed by direct sequencing. RESULTS: HBV genotype B, C and mixed genotype were detected in 400 serum samples, accounting for 8.3% (n = 33), 83.2% (n = 333), and 8.5% (n = 34), respectively. The evaluation of the oligonucleotide assay showed 100% concordance with the amplicon phylogenetic analysis except 9 mixed genotype infections undetected by sequencing. CONCLUSION: The study indicates that HBV genotype C and B prevail in the Eastern China. It is suggested that the oligonucleotide chip is a reliable and convenient tool for the detection of HBV genotyping.展开更多
AIM: To evaluate the efficacy of a new hepatitis C virus (HCV) core antigen assay developed in China. METHODS: After the determination of HCV infection, 49 serial samples were selected from II regular plasma donor...AIM: To evaluate the efficacy of a new hepatitis C virus (HCV) core antigen assay developed in China. METHODS: After the determination of HCV infection, 49 serial samples were selected from II regular plasma donors in 5 different plasma stations. To compare the performance of HCV core antigen detection and HCV PCR, these samples were genotyped, and each specimen was analyzed by ELISA for the detection of HCV core antigen and by qualitative HCV PCR. RESULTS: Among all of the sequential samples, the original 23 specimens were HCV RNA-negative, and 36 samples were HCV RNA-positive. Twenty-seven samples (75%) were HCV core antigen-positive from these HCV RNA-positive specimens. Conversely, 27 samples (93.2%) were found HCV RNA-positive in HCV core antigen- positive samples. Intervals between HCV RNA and HCV core antigen-positive, as well as between HCV core antigen-positive and HCV antibody-positive were 36.0 and 32.8 d, respectively. CONCLUSION: This HCV core antigen assay, developed in China, is able to detect much of anti-HCV-negative, HCV RNA-positive preseroconversion window period (PWP) plasma donations.展开更多
Calpastatin is an endogenous inhibitor of calpain which is responsible for the breakdown of myofibrillar proteins, The association of Single Nucleotide Polymorphism (SNP) in the calpastatin gene with meat tenderness...Calpastatin is an endogenous inhibitor of calpain which is responsible for the breakdown of myofibrillar proteins, The association of Single Nucleotide Polymorphism (SNP) in the calpastatin gene with meat tenderness is an important topic in meat production. Therefore efficient procedure to investigate the SNP is necessary. The objectives of this study were to detect the SNP of calpastatin gene at domain L marker (G/C transversion) of the Kamphaengsaen beef breed (KPS cattle; n = 26) by the Amplification Refractory Mutation System (ARMS) compared with the Restriction Fragment Length Polymorphism (RFLP) methods and to determine the genotypes of the KPS cattle at that marker. Genomic DNA of calpastatin gene extracted from blood of the KPS cattle was detected with ARMS and RFLP methods. The ARMS system has utilized two primer pairs to amplify the two different alleles of a polymorphism in single PCR reaction to detected single base mutation. In this method, the alleles-specific primers had a mismatch at 3' terminal base and a second deliberate mismatch at position -2 from 3' terminus. While the RFLP method detected a polymorphism using PCR-base technique follow by RsaI restriction enzyme. Amplification of the ARMS method revealed that the results were not different from the conventional method of RFLP. Analysis of genotypes revealed that the KPS cattle inherited the CC, CG and GG genotypes at domain L marker. These were reliable when verified by nucleotide sequence analysis of PCR products. The animals were genotyped and determined for tenderness phenotype with this marker that predicted variation of an intronic polymorphism at domain L of the calpastatin gene. Therefore, the ARMS method was simple, efficient technique, and suitable for detecting SNP at domain L marker of the calpastatin gene.展开更多
文摘AIM: TO determine the genotype distribution of hepatitis B virus (HBV) with a newly oligonucleotide chip assay among the HBV carriers in Eastern China. METHODS: An assay using oligonucleotide chip was developed for detection of HBV genotypes in serum samples from HBV DNA-positive patients in Eastern China. This method is based on the principle of reverse hybridization with Cy5-labeled amplicons hybridizing to type-specific oligonucleotide probes that are immobilized on slides. The results of 80 randomly chosen sera were confirmed by direct sequencing. RESULTS: HBV genotype B, C and mixed genotype were detected in 400 serum samples, accounting for 8.3% (n = 33), 83.2% (n = 333), and 8.5% (n = 34), respectively. The evaluation of the oligonucleotide assay showed 100% concordance with the amplicon phylogenetic analysis except 9 mixed genotype infections undetected by sequencing. CONCLUSION: The study indicates that HBV genotype C and B prevail in the Eastern China. It is suggested that the oligonucleotide chip is a reliable and convenient tool for the detection of HBV genotyping.
基金Supported by the National Key Technologies R&D Program of China during the 10th Five-Year Plan, No. 2001BA705B06 National High Technology Research and Development Program of China (863 Program), No. 2006AA020907
文摘AIM: To evaluate the efficacy of a new hepatitis C virus (HCV) core antigen assay developed in China. METHODS: After the determination of HCV infection, 49 serial samples were selected from II regular plasma donors in 5 different plasma stations. To compare the performance of HCV core antigen detection and HCV PCR, these samples were genotyped, and each specimen was analyzed by ELISA for the detection of HCV core antigen and by qualitative HCV PCR. RESULTS: Among all of the sequential samples, the original 23 specimens were HCV RNA-negative, and 36 samples were HCV RNA-positive. Twenty-seven samples (75%) were HCV core antigen-positive from these HCV RNA-positive specimens. Conversely, 27 samples (93.2%) were found HCV RNA-positive in HCV core antigen- positive samples. Intervals between HCV RNA and HCV core antigen-positive, as well as between HCV core antigen-positive and HCV antibody-positive were 36.0 and 32.8 d, respectively. CONCLUSION: This HCV core antigen assay, developed in China, is able to detect much of anti-HCV-negative, HCV RNA-positive preseroconversion window period (PWP) plasma donations.
文摘Calpastatin is an endogenous inhibitor of calpain which is responsible for the breakdown of myofibrillar proteins, The association of Single Nucleotide Polymorphism (SNP) in the calpastatin gene with meat tenderness is an important topic in meat production. Therefore efficient procedure to investigate the SNP is necessary. The objectives of this study were to detect the SNP of calpastatin gene at domain L marker (G/C transversion) of the Kamphaengsaen beef breed (KPS cattle; n = 26) by the Amplification Refractory Mutation System (ARMS) compared with the Restriction Fragment Length Polymorphism (RFLP) methods and to determine the genotypes of the KPS cattle at that marker. Genomic DNA of calpastatin gene extracted from blood of the KPS cattle was detected with ARMS and RFLP methods. The ARMS system has utilized two primer pairs to amplify the two different alleles of a polymorphism in single PCR reaction to detected single base mutation. In this method, the alleles-specific primers had a mismatch at 3' terminal base and a second deliberate mismatch at position -2 from 3' terminus. While the RFLP method detected a polymorphism using PCR-base technique follow by RsaI restriction enzyme. Amplification of the ARMS method revealed that the results were not different from the conventional method of RFLP. Analysis of genotypes revealed that the KPS cattle inherited the CC, CG and GG genotypes at domain L marker. These were reliable when verified by nucleotide sequence analysis of PCR products. The animals were genotyped and determined for tenderness phenotype with this marker that predicted variation of an intronic polymorphism at domain L of the calpastatin gene. Therefore, the ARMS method was simple, efficient technique, and suitable for detecting SNP at domain L marker of the calpastatin gene.