We analyze in detail the numerical results of superheavy nuclei in deformed relativistic mean-field model and deformed Skyrme-Hartree-Fock model. The common points and differences of both models are systematically com...We analyze in detail the numerical results of superheavy nuclei in deformed relativistic mean-field model and deformed Skyrme-Hartree-Fock model. The common points and differences of both models are systematically compared and discussed. Their consequences on the stability of superheavy nuclei are explored and explained. The theoretical results are compared with new data of superheavy nuclei from GSI and from Dubna and reasonable agreement is reached. Nuclear shell effect in superheavy region is analyzed and discussed. The spherical shell effect disappears in some cases due to the appearance of deformation or superdeformation in the ground states of nuclei, where valence nucleons occupy significantly the intruder levels of nuclei. It is shown for the first time that the significant occupation of valence nucleons on the intruder states plays an important role for the ground state properties of superheavy nuclei. Nuclei are stable in the deformed or superdeformed configurations. We further point out that one cannot obtain the octupole deformation of even-even nuclei in the present relativistic mean-field model with the σ, ω and ρ mesons because there is no parity violating interaction and the conservation of parity of even-even nuclei is a basic assumption of the present relativistic mean-field model.展开更多
A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld she...A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.展开更多
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method...We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.展开更多
In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustr...In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.展开更多
The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculation...The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculations show that the magnitude of shell effects in the emission of particles changes with the neutron-to-proton ratio N/Z of these fissioning nuclei, and this change is affected significantly by the spin and excitation energy of the system. It is shown that high angular momentum enhances the dependence of shell effects on the N/Z while high excitation energy weakens such a dependence.展开更多
Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protone...Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K^- condensation delay to higher density and fifo condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping. As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K^+ and K^- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.展开更多
Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting...Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting, merging, and intersection) during the evolution of the monopoles.展开更多
The excitation functions of two very similar reaction channels, 58Fe+ 208pb→ 265Hs + 1n and 58Fe+ 209Bi → 266Mt +1n are studied in the framework of the dinuclear system conception. The fusion probabilities are f...The excitation functions of two very similar reaction channels, 58Fe+ 208pb→ 265Hs + 1n and 58Fe+ 209Bi → 266Mt +1n are studied in the framework of the dinuclear system conception. The fusion probabilities are found to be strongly subject to the structure of the driving potential. Usually the fusion probability is hindered by a barrier from the injection channel towards the compound nuclear configuration. The barrier towards the mass symmetrical direction, however, also plays an important role for the fusion probability, because the barrier hinders the quasi-fission, and therefore helps fusion.展开更多
The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential mode...The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.展开更多
Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increas...Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increasing the isospin asymmetry of these fissioning nuclei the sensitivity of the emitted γ multiplicity to the nuclear viscosity coefficient is decreased significantly. For 200Os nuc/eus, this γ-ray emission is no longer sensitive to the magnitude of the viscosity coefficient. In addition, the effect of the isospin asymmetry on the γ rays as a probe of nuclear dissipation is reduced with increasing angular momentum. These results suggest that to obtain a more accurate information of the viscosity coemfficient by the measurement of pre-scission GDR γ-ray multiplicity it is better to choose those compound systems with small isospin asymmetry and low spin.展开更多
We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibrationof a nanomechanical resonator made by semiconductor materials.We show that the spin-orbit interactions of elec...We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibrationof a nanomechanical resonator made by semiconductor materials.We show that the spin-orbit interactions of electronscan induce a coherent coupling between the electron spins and the torsional modes of nanomechanical vibration.Thiscoupling leads to an active cooling for the torsional modes through the dynamical thermalization of the resonator by thespin ensemble.展开更多
The branching ratios and CP violations of the B →Dπ decays, including both the color-allowed and the color-suppressed modes, are investigated in detail within QCD framework by considering all diagrams that lead to t...The branching ratios and CP violations of the B →Dπ decays, including both the color-allowed and the color-suppressed modes, are investigated in detail within QCD framework by considering all diagrams that lead to three effective currents of two quarks. An intrinsic mass scale as a dynamical gluon mass is introduced to treat the infrared divergence caused by the soft collinear approximation in the endpoint regions, and the Cutkosky rule is adopted to deal with a physical-region singularity of the on mass-shell quark propagators. When the dynamical gluon mass μg is regarded as a universal sca/e, it is extracted to be around μg = 440 MeV from one of the well-measured B →Dπ decay modes. The resulting predictions for all branching ratios are in agreement with the current experimental measurements. As these decays have no penguin contributions, there are no direct CP asymmetries. Due to interference between the Cabibbo-suppressed and the Cabibbo-favored amplitudes, mixing-induced CP violations are predicted in the B →D^±π^±↓ decays to be consistent with the experimental data at 1-σ level. More precise measurements will be helpful to extracting weak angle 2β+γ.展开更多
The formalisms of helicity coupling amplitudes for J/ψ→π^+π^-π^0 are presented. A detailed discussion is also given on the barrier factor, Breit Wigner, and density matrix. A Monte Carlo simulation of J/ψ→ρ(...The formalisms of helicity coupling amplitudes for J/ψ→π^+π^-π^0 are presented. A detailed discussion is also given on the barrier factor, Breit Wigner, and density matrix. A Monte Carlo simulation of J/ψ→ρ(770)π→π^+π^-π^0 is carried out. The results show that the p(770) resonance is well reproduced compared with experimental data.展开更多
Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>...Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.展开更多
Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isos...Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.展开更多
Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) sym...Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the 7-ray energies and the dynamical moments of inertia in the rotation bands in ^157 Er and ^158 Er at ultrahigh spin are obtained. We theoretically predict that the competition between the anti-pairing and pairing effects may exist in ^157 Er(1,2) and ^158Et(2) bands states. In ^158Er(1) band state, the favourepairing effects may exist and the SO(5) (or SU(5)) symmetry play a dominant role. There may be sphere coexisting with headecupole deformed in ^158Et(1) rotation band state.展开更多
On the condition of electric-LO phonon strong coupling in unsymmetrical parabolic confinement potential quantum dot (QD), we obtain the eigenenergies of the ground state and the first-excited state, the eigenfunctio...On the condition of electric-LO phonon strong coupling in unsymmetrical parabolic confinement potential quantum dot (QD), we obtain the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state, and the first-excited state by using variational method of Pekar type. This system in QD may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations both the probability density of electron and the period of oscillation with the electron-LO-phonon coupling strength, the confinement strengths in the xy-plane and the z-direction are discussed.展开更多
文摘We analyze in detail the numerical results of superheavy nuclei in deformed relativistic mean-field model and deformed Skyrme-Hartree-Fock model. The common points and differences of both models are systematically compared and discussed. Their consequences on the stability of superheavy nuclei are explored and explained. The theoretical results are compared with new data of superheavy nuclei from GSI and from Dubna and reasonable agreement is reached. Nuclear shell effect in superheavy region is analyzed and discussed. The spherical shell effect disappears in some cases due to the appearance of deformation or superdeformation in the ground states of nuclei, where valence nucleons occupy significantly the intruder levels of nuclei. It is shown for the first time that the significant occupation of valence nucleons on the intruder states plays an important role for the ground state properties of superheavy nuclei. Nuclei are stable in the deformed or superdeformed configurations. We further point out that one cannot obtain the octupole deformation of even-even nuclei in the present relativistic mean-field model with the σ, ω and ρ mesons because there is no parity violating interaction and the conservation of parity of even-even nuclei is a basic assumption of the present relativistic mean-field model.
基金The project supported by National Natural Science Foundation of China under Grant No. 10547005
文摘A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10047001,10347113+2 种基金the State Key Basic Research Development Program under Contract No.G200077400the Excellent Young Researcher Grant
文摘We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.
基金the Postdoctoral Fund of Huazhong University of Science and Technology under Grant No.0128011006
文摘In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.
基金国家自然科学基金,Teaching and Researching Foundation for the Excellent Teachers of Southeast University
文摘The shell effects on the particle evaporation prior to fission for three Pb isotopes, ^204Pb, ^208Pb, and ^212pb,as well as three Sn isotopes, ^128Sn, ^132Sn, and ^136Sn, are explored by a diffusion model. Calculations show that the magnitude of shell effects in the emission of particles changes with the neutron-to-proton ratio N/Z of these fissioning nuclei, and this change is affected significantly by the spin and excitation energy of the system. It is shown that high angular momentum enhances the dependence of shell effects on the N/Z while high excitation energy weakens such a dependence.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575005, 10275002, 10435080, 10425521, and 10135030, the Key Project of the Ministry of Education under Grant No. 305001, and the CAS Knowledge Innovation Project under Grant No. KJcx2-sw-No2 0ne of authors (Hua Guo) is indebted to Dr. S. Pal since we can check our numerical results by using his code, and also thank Dr. Z.W. Lin for his kind help.
文摘Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K^- condensation delay to higher density and fifo condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping. As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K^+ and K^- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.
基金The project supported by National Natural Science Foundation of China and under Grant No. 10475034
文摘Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting, merging, and intersection) during the evolution of the monopoles.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10505016, 10235020, and 10235030, the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant Nos. KJCX2-SW-N17 and KJCX-SYW-N2, the Natural Science Foundation of Guangdong Province under Grant No. 04300874, Major State Basic Research Development Program under Grant No. 2007CB815000 and the Financial Support from DFG of Germany
文摘The excitation functions of two very similar reaction channels, 58Fe+ 208pb→ 265Hs + 1n and 58Fe+ 209Bi → 266Mt +1n are studied in the framework of the dinuclear system conception. The fusion probabilities are found to be strongly subject to the structure of the driving potential. Usually the fusion probability is hindered by a barrier from the injection channel towards the compound nuclear configuration. The barrier towards the mass symmetrical direction, however, also plays an important role for the fusion probability, because the barrier hinders the quasi-fission, and therefore helps fusion.
文摘The K<SUP>?</SUP> nucleus differential elastic scattering cross section for <SUP>12</SUP>C and <SUP>40</SUP>Ca at is calculated with three momentum-dependent optical potential models, which are density-dependent, relativistic mean field, and hybrid model, respectively. It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K<SUP>?</SUP> nucleus elastic scattering.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405007
文摘Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increasing the isospin asymmetry of these fissioning nuclei the sensitivity of the emitted γ multiplicity to the nuclear viscosity coefficient is decreased significantly. For 200Os nuc/eus, this γ-ray emission is no longer sensitive to the magnitude of the viscosity coefficient. In addition, the effect of the isospin asymmetry on the γ rays as a probe of nuclear dissipation is reduced with increasing angular momentum. These results suggest that to obtain a more accurate information of the viscosity coemfficient by the measurement of pre-scission GDR γ-ray multiplicity it is better to choose those compound systems with small isospin asymmetry and low spin.
基金NSFC under Grant Nos.90203018,10474104,10574077,and 60433050NFRPC under Grant Nos.2006CB921206,2006CBOL0601,2006AA06Z104,and 2005CB724508
文摘We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibrationof a nanomechanical resonator made by semiconductor materials.We show that the spin-orbit interactions of electronscan induce a coherent coupling between the electron spins and the torsional modes of nanomechanical vibration.Thiscoupling leads to an active cooling for the torsional modes through the dynamical thermalization of the resonator by thespin ensemble.
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos.10475105,10491306,and 10675039the Knowledge Innovation Program (PKIP) of the Chinese Academy of Sciences
文摘The branching ratios and CP violations of the B →Dπ decays, including both the color-allowed and the color-suppressed modes, are investigated in detail within QCD framework by considering all diagrams that lead to three effective currents of two quarks. An intrinsic mass scale as a dynamical gluon mass is introduced to treat the infrared divergence caused by the soft collinear approximation in the endpoint regions, and the Cutkosky rule is adopted to deal with a physical-region singularity of the on mass-shell quark propagators. When the dynamical gluon mass μg is regarded as a universal sca/e, it is extracted to be around μg = 440 MeV from one of the well-measured B →Dπ decay modes. The resulting predictions for all branching ratios are in agreement with the current experimental measurements. As these decays have no penguin contributions, there are no direct CP asymmetries. Due to interference between the Cabibbo-suppressed and the Cabibbo-favored amplitudes, mixing-induced CP violations are predicted in the B →D^±π^±↓ decays to be consistent with the experimental data at 1-σ level. More precise measurements will be helpful to extracting weak angle 2β+γ.
基金The project partly supported by National Natural Science Foundation of China under Grant Nos. 10447130, 10375074, and 10491303The authors thank Prof. Yuan Chang-Zheng for useful discussions and comments.
文摘The formalisms of helicity coupling amplitudes for J/ψ→π^+π^-π^0 are presented. A detailed discussion is also given on the barrier factor, Breit Wigner, and density matrix. A Monte Carlo simulation of J/ψ→ρ(770)π→π^+π^-π^0 is carried out. The results show that the p(770) resonance is well reproduced compared with experimental data.
文摘Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.
基金the Teaching & Researching Foundation for Outstanding Teachers of Southeast University
文摘Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.
基金National Natural Science Foundation of China under Grant No.10475026the Natural Science Foundation of Zhejiang Province under Grant No.KY607518
文摘Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the 7-ray energies and the dynamical moments of inertia in the rotation bands in ^157 Er and ^158 Er at ultrahigh spin are obtained. We theoretically predict that the competition between the anti-pairing and pairing effects may exist in ^157 Er(1,2) and ^158Et(2) bands states. In ^158Er(1) band state, the favourepairing effects may exist and the SO(5) (or SU(5)) symmetry play a dominant role. There may be sphere coexisting with headecupole deformed in ^158Et(1) rotation band state.
文摘On the condition of electric-LO phonon strong coupling in unsymmetrical parabolic confinement potential quantum dot (QD), we obtain the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state, and the first-excited state by using variational method of Pekar type. This system in QD may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations both the probability density of electron and the period of oscillation with the electron-LO-phonon coupling strength, the confinement strengths in the xy-plane and the z-direction are discussed.