In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustr...In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.展开更多
Properties of the superdeformed bands of odd-odd nuclei in A ~ 80 massregion are investigated system-atically within the supersymmetry scheme including many-bodyinteractions and a perturbation possessing the SO(5) (o...Properties of the superdeformed bands of odd-odd nuclei in A ~ 80 massregion are investigated system-atically within the supersymmetry scheme including many-bodyinteractions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry.The obtained γ-ray energies, and the dynamical moments of inertia agree with experimental data. Itshows that this approach is quite powerful in describing odd-odd nuclei in A ~ 80 mass region.展开更多
Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,p...Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,probability methods of seismic hazard analysis as well as interaction about structure and foundation,meanwhile provide the reason for nuclear engineering selecting sites.展开更多
The recent progresses on the wobbling motion are briefly introduced.So far 17 wobbling candidates have been reported in odd-A and even-even nuclei that spread over A≈100,130,160 and 190 mass regions.The two-quasipart...The recent progresses on the wobbling motion are briefly introduced.So far 17 wobbling candidates have been reported in odd-A and even-even nuclei that spread over A≈100,130,160 and 190 mass regions.The two-quasiparticle configuration wobbling in ^(130)Ba and the wobbling motion in a triaxial rotor are taken as examples in this paper to show the wobbling motion in even-even nuclei.For the ^(130)Ba,the wobbling are investigated based on the combination of the covariant density functional theory(CDFT)and the particle rotor model(PRM).The CDFT provides crucial information on the configuration and deformation parameters of observed bands,serving as input for PRM calculations.The corresponding experimental energy spectra and electromagnetic transition probabilities are reproduced.An analysis of the angular momentum geometry reveals the enhanced stability of transverse wobbling of a two-quasiparticle configuration compared to a single-quasiparticle one.For the triaxial rotor,the time evolution of wobbling motion is explored through the solution of Euler equations.This investigation yields valuable insights into the evolution of orientation angles(φ and θ)and angular momentum components.Notably,the study reveals that low-energy states of a triaxial rotor predominantly exhibit wobbling motion around the intermediate axis.Moreover,an increase in excitation energy corresponds to a prolonged period of intermediate axis wobbling motion.Conversely,a contrasting trend is observed in the case of long axis wobbling,where an increase in excitation energy leads to a decrease in the wobbling period.展开更多
One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation...One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation of rotational spectra of two-particle cluster states. To this end, Deng-Fan potential in addition to Hellman potential is used as the core and cluster potential. Next, given the Wildermuth condition, and proper quantum numbers describing the relative motion of the alpha particle and core, the rotational levels of20 Ne and44 Ti isotopes are calculated. Our studies show that the results are in good agreement with the available data.展开更多
基金the Postdoctoral Fund of Huazhong University of Science and Technology under Grant No.0128011006
文摘In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.
基金国家自然科学基金,教育部重点项目,教育部高校骨干教师资助计划,the Scientific Research Foundation of Zheiiang Province of China
文摘Properties of the superdeformed bands of odd-odd nuclei in A ~ 80 massregion are investigated system-atically within the supersymmetry scheme including many-bodyinteractions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry.The obtained γ-ray energies, and the dynamical moments of inertia agree with experimental data. Itshows that this approach is quite powerful in describing odd-odd nuclei in A ~ 80 mass region.
文摘Nuclear engineering belongs to significant project;there is higher requirement on sitings.The study has discussed basic factors of selecting sites,anti-seismic research on sitings including the seismic ground motion,probability methods of seismic hazard analysis as well as interaction about structure and foundation,meanwhile provide the reason for nuclear engineering selecting sites.
文摘The recent progresses on the wobbling motion are briefly introduced.So far 17 wobbling candidates have been reported in odd-A and even-even nuclei that spread over A≈100,130,160 and 190 mass regions.The two-quasiparticle configuration wobbling in ^(130)Ba and the wobbling motion in a triaxial rotor are taken as examples in this paper to show the wobbling motion in even-even nuclei.For the ^(130)Ba,the wobbling are investigated based on the combination of the covariant density functional theory(CDFT)and the particle rotor model(PRM).The CDFT provides crucial information on the configuration and deformation parameters of observed bands,serving as input for PRM calculations.The corresponding experimental energy spectra and electromagnetic transition probabilities are reproduced.An analysis of the angular momentum geometry reveals the enhanced stability of transverse wobbling of a two-quasiparticle configuration compared to a single-quasiparticle one.For the triaxial rotor,the time evolution of wobbling motion is explored through the solution of Euler equations.This investigation yields valuable insights into the evolution of orientation angles(φ and θ)and angular momentum components.Notably,the study reveals that low-energy states of a triaxial rotor predominantly exhibit wobbling motion around the intermediate axis.Moreover,an increase in excitation energy corresponds to a prolonged period of intermediate axis wobbling motion.Conversely,a contrasting trend is observed in the case of long axis wobbling,where an increase in excitation energy leads to a decrease in the wobbling period.
文摘One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation of rotational spectra of two-particle cluster states. To this end, Deng-Fan potential in addition to Hellman potential is used as the core and cluster potential. Next, given the Wildermuth condition, and proper quantum numbers describing the relative motion of the alpha particle and core, the rotational levels of20 Ne and44 Ti isotopes are calculated. Our studies show that the results are in good agreement with the available data.