基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较...基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较大规模数据集的学习;核偏最小二乘(KPLS)方法将输入变量投影在潜在变量上,利用输入与输出变量之间的协方差信息提取潜在特征;核极限学习机(KELM)方法用核函数表示未知的隐含层非线性特征映射,通过正则化最小二乘算法计算网络的输出权值,能以极快的学习速度获得良好的推广性。为验证所提方法的有效性,将KELM、KPLS、ALD-KRLS用于不同实测交通流数据中,在同等条件下,与现有方法进行比较。实验结果表明,不同核学习方法的预测精度和训练速度均有所提高,体现了核学习方法在短时交通流量预测中的应用潜力。展开更多
The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is ...The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification,which can compress the input or feature space and suppress the growth of the radial basis function(RBF)structure in the kernel learning algorithm.To verify the effectiveness of the algorithm,it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration.In additiion,the proposed algorithm is further compared with least squares support vector machine(LS-SVM),echo state network(ESN),extreme learning machine with kernels(KELM),etc.The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions.展开更多
文摘基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较大规模数据集的学习;核偏最小二乘(KPLS)方法将输入变量投影在潜在变量上,利用输入与输出变量之间的协方差信息提取潜在特征;核极限学习机(KELM)方法用核函数表示未知的隐含层非线性特征映射,通过正则化最小二乘算法计算网络的输出权值,能以极快的学习速度获得良好的推广性。为验证所提方法的有效性,将KELM、KPLS、ALD-KRLS用于不同实测交通流数据中,在同等条件下,与现有方法进行比较。实验结果表明,不同核学习方法的预测精度和训练速度均有所提高,体现了核学习方法在短时交通流量预测中的应用潜力。
基金supported by National Natural Science Foundation of China(No.51467008)Gansu Provincial Department of Education Industry Support Program(No.2021CYZC-32)。
基金National Natural Science Foundation of China(No.51467008)Scientific Research Projects of Colleges and Universities in Gansu Province(Nos.2018C-10,2017D-09)。
文摘The continuous stirred tank reactor(CSTR)is one of the typical chemical processes.Aiming at its strong nonlinear characteristics,a quantized kernel least mean square(QKLMS)algorithm is proposed.The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification,which can compress the input or feature space and suppress the growth of the radial basis function(RBF)structure in the kernel learning algorithm.To verify the effectiveness of the algorithm,it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration.In additiion,the proposed algorithm is further compared with least squares support vector machine(LS-SVM),echo state network(ESN),extreme learning machine with kernels(KELM),etc.The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions.