Both functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) can provide different information of the human brain, so using the wavelet transform method can achieve a fusion of these two ty...Both functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) can provide different information of the human brain, so using the wavelet transform method can achieve a fusion of these two types of image data and can effectively improve the depression recognition accuracy. Multi-resolution wavelet decomposition is used to transform each type of images to the frequency domain in order to obtain the frequency components of the images. To each subject, decomposition components of two images are then added up separately according to their frequencies. The inverse discrete wavelet transform is used to reconstruct the fused images. After that, principal component analysis (PCA) is applied to reduce the dimension and obtain the features of the fusion data before classification. Based on the features of the fused images, an accuracy rate of 80. 95 % for depression recognition is achieved using a leave-one-out cross-validation test. It can be concluded that this wavelet fusion scheme has the ability to improve the current diagnosis of depression.展开更多
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ...Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.展开更多
在神经美学研究中已经证明,中文字体审美偏好的情绪刺激可以通过观察3种偏好(喜欢、不喜欢和中性)之间的事件相关电位(event related potential,ERP)波动获得.本文通过引入一种核化张量奇异值分解的多视角聚类方法分别构建了基于脑电图(...在神经美学研究中已经证明,中文字体审美偏好的情绪刺激可以通过观察3种偏好(喜欢、不喜欢和中性)之间的事件相关电位(event related potential,ERP)波动获得.本文通过引入一种核化张量奇异值分解的多视角聚类方法分别构建了基于脑电图(electroencephalogram,EEG)和ERP的审美偏好识别模型,通过这些模型首次确认了该结论.本文方法将来自不同频段的数据视为描述中文字体审美偏好的不同视角,通过张量多秩最小化的约束探索所有视角特征的一致性和关联性,并通过之后的聚类获取审美偏好的识别结果.采用多视角无监督聚类方法得到的识别精度达到97.1%.此外,通过输入–扰动关联方法将电极的振幅与不同种类的审美偏好相关联,可视化关键频段组合以及电极之间的关系,分别取出与喜欢、不喜欢、中性最相关的3个电极,包含次相关的6个电极,包含第三相关的9个电极,包含第四相关的12个电极,分别形成4种不同组合的脑电特征.通过比较实验,验证了相对于62个电极信号,上述4种组合方式在字体美学分类上更具有优势,并且最相关的3个电极的组合特征对审美偏好最具判别性.实验结果表明,基于多视角聚类的方法能够解决神经信号与审美偏好的相关分析,并能挖掘出与字体审美偏好最相关的电极.展开更多
A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra wit...A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra with the new coupling constants suggest the good agreement between the calculation and available data. The spin-orbit splitting of hyperon in medium mass hypernuclei is systematically larger than that in light- or heavy-mass hypernuclei. The sensitivity of the Lambda spin-orbit splitting to the omega-Lambda-Laznbda tensor coupling term is also explored.展开更多
基金The National Natural Science Foundation of China(No.30900356,81071135)
文摘Both functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) can provide different information of the human brain, so using the wavelet transform method can achieve a fusion of these two types of image data and can effectively improve the depression recognition accuracy. Multi-resolution wavelet decomposition is used to transform each type of images to the frequency domain in order to obtain the frequency components of the images. To each subject, decomposition components of two images are then added up separately according to their frequencies. The inverse discrete wavelet transform is used to reconstruct the fused images. After that, principal component analysis (PCA) is applied to reduce the dimension and obtain the features of the fusion data before classification. Based on the features of the fused images, an accuracy rate of 80. 95 % for depression recognition is achieved using a leave-one-out cross-validation test. It can be concluded that this wavelet fusion scheme has the ability to improve the current diagnosis of depression.
基金financially supported by the National Nautral Science Foundation of China(No.61703206)
文摘Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.
文摘在神经美学研究中已经证明,中文字体审美偏好的情绪刺激可以通过观察3种偏好(喜欢、不喜欢和中性)之间的事件相关电位(event related potential,ERP)波动获得.本文通过引入一种核化张量奇异值分解的多视角聚类方法分别构建了基于脑电图(electroencephalogram,EEG)和ERP的审美偏好识别模型,通过这些模型首次确认了该结论.本文方法将来自不同频段的数据视为描述中文字体审美偏好的不同视角,通过张量多秩最小化的约束探索所有视角特征的一致性和关联性,并通过之后的聚类获取审美偏好的识别结果.采用多视角无监督聚类方法得到的识别精度达到97.1%.此外,通过输入–扰动关联方法将电极的振幅与不同种类的审美偏好相关联,可视化关键频段组合以及电极之间的关系,分别取出与喜欢、不喜欢、中性最相关的3个电极,包含次相关的6个电极,包含第三相关的9个电极,包含第四相关的12个电极,分别形成4种不同组合的脑电特征.通过比较实验,验证了相对于62个电极信号,上述4种组合方式在字体美学分类上更具有优势,并且最相关的3个电极的组合特征对审美偏好最具判别性.实验结果表明,基于多视角聚类的方法能够解决神经信号与审美偏好的相关分析,并能挖掘出与字体审美偏好最相关的电极.
基金Supported by Chinese Universities Scientific Fund under Grant No.2011JS050
文摘A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra with the new coupling constants suggest the good agreement between the calculation and available data. The spin-orbit splitting of hyperon in medium mass hypernuclei is systematically larger than that in light- or heavy-mass hypernuclei. The sensitivity of the Lambda spin-orbit splitting to the omega-Lambda-Laznbda tensor coupling term is also explored.