期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于偏互信息与核心向量机的煤质大数据预测 被引量:1
1
作者 梁伟平 牛博通 《电力科学与工程》 2018年第7期49-55,共7页
为了改善基于算法的煤质发热量预测在大规模数据数下计算耗时的情况,利用可完成大规模数据建模的核心支持向量回归机(Core Vector Regression,CVR)建立了煤质发热量预测模型,并利用偏互信息(Partial Mutual Information,PMI)对模型特征... 为了改善基于算法的煤质发热量预测在大规模数据数下计算耗时的情况,利用可完成大规模数据建模的核心支持向量回归机(Core Vector Regression,CVR)建立了煤质发热量预测模型,并利用偏互信息(Partial Mutual Information,PMI)对模型特征变量进行分析筛选。通过对某电厂6 180组数据的验证比较,发现经过PMI筛选后的CVR煤质发热量预测结果相对误差为0.025,计算时间为0.272 s,优于未筛选的CVR,并与最小二乘支持向量机(Least Square Supported Vector Machine,LSSVM)算法在不同样本规模下对比,结果表明随着数据规模的增加PMI-CVR的计算时间远小于LSSVM,所以在大规模数据趋势下PMI-CVR计算更快、更具优势。 展开更多
关键词 煤质发热量 核心支持向量机 偏互信息 大规模数据
下载PDF
WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION 被引量:1
2
作者 Tong Yubing Yang Dongkai Zhang Qishan 《Journal of Electronics(China)》 2006年第4期539-542,共4页
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support... Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines. 展开更多
关键词 Wavelet kernel function Support Vector Machines (SVM) Sparse approximation Quadratic Programming (QP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部