期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中型企业核心网络基础结构的设计与构建
1
作者 易月娥 邓文达 潘勇 《长沙民政职业技术学院学报》 2006年第4期90-92,共3页
企业网络核心基础结构包括硬件和软件,这些组件集合在一起提供满足不同商业需求的一系列网络服务。核心网络基础结构是整个网络基础结构的一部分,支持网络基础结构的其他部分,并形成它们的基础。该文探讨了中型企业核心网络基础结构的... 企业网络核心基础结构包括硬件和软件,这些组件集合在一起提供满足不同商业需求的一系列网络服务。核心网络基础结构是整个网络基础结构的一部分,支持网络基础结构的其他部分,并形成它们的基础。该文探讨了中型企业核心网络基础结构的设计方法,并且给出了实现不同商业需求的中型企业核心网络基础架构的完整方案。 展开更多
关键词 核心网络基础结构 服务布局拓扑 目录服务
下载PDF
Semi-Supervised Learning Based Big Data-Driven Anomaly Detection in Mobile Wireless Networks 被引量:6
2
作者 bilal hussain qinghe du pinyi ren 《China Communications》 SCIE CSCD 2018年第4期41-57,共17页
With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different lev... With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different levels of network architecture and is typically underutilized. To unleash its full value, innovative machine learning algorithms need to be utilized in order to extract valuable insights which can be used for improving the overall network's performance. Additionally, a major challenge for network operators is to cope up with increasing number of complete(or partial) cell outages and to simultaneously reduce operational expenditure. This paper contributes towards the aforementioned problems by exploiting big data generated from the core network of 4 G LTE-A to detect network's anomalous behavior. We present a semi-supervised statistical-based anomaly detection technique to identify in time: first, unusually low user activity region depicting sleeping cell, which is a special case of cell outage; and second, unusually high user traffic area corresponding to a situation where special action such as additional resource allocation, fault avoidance solution etc. may be needed. Achieved results demonstrate that the proposed method can be used for timely and reliable anomaly detection in current and future cellular networks. 展开更多
关键词 5G 4G LTE-A anomaly detec-tion call detail record machine learning bigdata analytics network behavior analysis sleeping cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部