期刊文献+
共找到1,787篇文章
< 1 2 90 >
每页显示 20 50 100
基于模糊C均值聚类的空—地—井垂直重力梯度数据反演方法
1
作者 张显 侯振隆 +3 位作者 赵福权 秦朋波 赵信阳 王家辉 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期629-639,共11页
通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度... 通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度数据联合反演的纵向空间分辨率,尤其是异常体底部的成像分辨率有待提升。针对该问题,开展了航空—地面—井中垂直重力梯度数据的联合反演方法研究。首先,在正则化反演中引入模糊C均值聚类算法,通过在迭代过程中加入聚类约束降低多解性;其次,联合航空、地面和井中垂直重力梯度数据,提出一种联合反演方法,并使用GPU加速计算;然后,将反演应用于理论模型数据与美国文顿盐丘地区重力梯度数据,验证方法的效果,并讨论了井位置对结果的影响;最后,对基于GPU加速的并行反演方法进行性能分析。数据试验证明了模糊C均值聚类算法能够降低反演的多解性,通过联合反演能够获得准确的密度分布,该方法具有一定的抗噪能力;使用异常旁井和穿异常井数据的成像分辨率更高。计算的文顿盐丘地区密度分布与其他学者的结论相近,证明了方法是有效且可行的。试验还表明,GPU并行方法具有较高的加速比,提出的方法能够为地质找矿等研究提供技术支撑。 展开更多
关键词 空—地—井垂直重力梯度 密度反演 模糊c均值 文顿盐丘 GPU加速
下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
2
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊c均值算法 高斯函数 数据挖掘 隐私预算
下载PDF
基于模糊C均值聚类算法的浆液循环泵节能运行优化方法研究
3
作者 闫庚 《自动化应用》 2024年第14期175-177,共3页
在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的... 在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的数据进行卷积计算,获取低维空间的特征映射,随后通过反卷积确定浆液循环泵运行参数特征;在节能运行优化阶段,引入模糊C均值聚类算法,通过聚类具有相同特征的数据,将相同聚类内功耗最小的参数作为同类运行工况下的优化结果。结果显示,测试循环泵的功耗虽然会随着通过的最大颗粒粒度的增加而呈稳定增大的趋势,但对应的增幅较小,与对照组相比,其分别在节能程度和节能适应性方面表现出了明显优势。 展开更多
关键词 模糊c均值算法 浆液循环泵 深度学习模型 特征提取
下载PDF
基于模糊C均值聚类的高铁动车组电缆终端局部放电识别
4
作者 杨燕花 陈珍宝 +4 位作者 曹晗 张彦林 刘凯 陈奎 高国强 《机车电传动》 2024年第3期156-163,共8页
局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频... 局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频电流法(HFCT)获取了电缆终端的局放信号和典型脉冲干扰信号,通过对脉冲单波进行包络处理,提取脉冲的3个参数作为特征向量,然后采用模糊C均值聚类方法对局放信号与脉冲干扰信号进行分离。试验结果表明,该方法能够有效地将局放信号与脉冲干扰信号分离,减小脉冲干扰信号对局部放电检测的影响,对提高局放手段评估车载电缆终端绝缘状态的准确性具有一定意义。 展开更多
关键词 动车组 电缆终端 局部放电 脉冲干扰 模糊c均值
下载PDF
基于自适应近邻信息的模糊C均值聚类算法
5
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值 自适应近邻 算法鲁棒性 迭代算法
下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
6
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊c均值 联合反演 综合解释 先验约束信息 多属性
下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法
7
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值 均值滤波 中值滤波 模糊隶属度的稀疏性
下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
8
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊c有序均值 竞争学习 鲁棒性
下载PDF
基于耦合空间模糊C均值聚类和推土机距离的变化检测
9
作者 谢江陵 李轶鲲 +2 位作者 李小军 杨树文 魏易从 《遥感信息》 CSCD 北大核心 2024年第3期144-152,共9页
在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大... 在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大规模应用。对此,文章将5种空间模糊C均值算法分别与推土机距离(earth mover’s distance, EMD)耦合,实现了5种具有较好抗噪声能力的无监督遥感变化检测算法,能够保证噪声污染下的实时变化检测精度。实验证明,与最近提出的KPCAMNet和GMCD无监督变化检测算法相比,所提出算法能更好地处理受椒盐、高斯和混合噪声污染的遥感影像,具有一定的应用价值。 展开更多
关键词 无监督 抗噪声 变化检测 空间模糊c均值 推土机距离
下载PDF
基于超像素快速模糊聚类的印刷品图像分割方法
10
作者 彭来湖 张晓蓉 +1 位作者 李建强 胡旭东 《包装学报》 2024年第3期85-90,共6页
针对当前彩色印刷品色差检测过程中效率低、复杂性高等问题,提出了一种基于超像素快速模糊聚类的印刷品图像分割方法(SFFCM)。先用简单线性迭代聚类(SLIC)算法将图像分割为紧密相邻的超像素区域。每个超像素区域被视为一个独立的聚类单... 针对当前彩色印刷品色差检测过程中效率低、复杂性高等问题,提出了一种基于超像素快速模糊聚类的印刷品图像分割方法(SFFCM)。先用简单线性迭代聚类(SLIC)算法将图像分割为紧密相邻的超像素区域。每个超像素区域被视为一个独立的聚类单元。随后,将模糊C均值聚类(FCM)算法应用于超像素的归属关系计算中,即引入隶属度值,允许超像素归属于多个聚类中心,并通过权衡归属度值来实现模糊聚类。实验结果表明,相对于其他算法,本文方法在保持良好实时性的同时,实现了较好的分割效果,有效平衡了算法复杂度与分割效果之间的关系。 展开更多
关键词 印刷品 图像分割 简单线性迭代算法 模糊c均值 超像素
下载PDF
基于直觉模糊c均值聚类核匹配追踪的弹道中段目标识别方法 被引量:11
11
作者 雷阳 孔韦韦 雷英杰 《通信学报》 EI CSCD 北大核心 2012年第11期136-143,共8页
针对核匹配追踪算法(KMP,kernel matching pursuit)进行全局最优搜索导致学习时间过长这一缺陷,汲取直觉模糊c均值聚类(IFCM,intuitionistic fuzzy c-means)算法的动态聚类特性优势,提出一种基于直觉模糊c均值聚类的核匹配追踪(IFCM-KMP... 针对核匹配追踪算法(KMP,kernel matching pursuit)进行全局最优搜索导致学习时间过长这一缺陷,汲取直觉模糊c均值聚类(IFCM,intuitionistic fuzzy c-means)算法的动态聚类特性优势,提出一种基于直觉模糊c均值聚类的核匹配追踪(IFCM-KMP,intuitionistic fuzzy c-means kernel matching pursuit)算法,且对UCI库中4组实际样本数据进行了分类实验及有效性测试。最后,选取高分辨距离像(HRRP)这一弹道中段目标识别常用的特征属性,对其进行特征提取获得子像,并分别采用FCM,KMP,IFCM-KMP 3种算法对真弹头进行目标识别仿真实验及结果对比分析,充分表明了IFCM-KMP算法用于弹道中段目标识别较之FCM、KMP的优越性及有效性。 展开更多
关键词 直觉模糊 c均值 模糊c均值 匹配追踪 高分辨距离像 目标识别
下载PDF
变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法 被引量:22
12
作者 姜万录 王浩楠 +2 位作者 朱勇 王振威 董克岩 《中国机械工程》 EI CAS CSCD 北大核心 2017年第10期1215-1220,1226,共7页
提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信... 提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信号的样本熵和均方根值作为特征向量,从而得到训练样本和测试样本的特征向量集;第四步,通过KFCM聚类方法对训练样本特征向量集进行聚类分析,得到四种类型信号的聚类中心;最后根据测试样本特征向量与训练样本聚类中心欧式距离最小的原则识别故障类型。此外,将振动信号用经验模态分解(EMD)方法进行消噪,再用KFCM聚类进行分类识别,将两种方法的识别效果进行对比,结果表明所提方法的故障识别效果要优于EMD消噪和KFCM聚类相结合方法的识别效果。 展开更多
关键词 变分模态分解 模糊c均值 样本熵 故障识别
下载PDF
核模糊C均值聚类粒度支持向量机方法研究 被引量:3
13
作者 王建国 张鑫礼 张文兴 《中国测试》 CAS 北大核心 2016年第2期96-99,共4页
针对传统粒度支持向量机(granular support vector machine,GSVM)在处理大规模数据集时划分方法的随机性严重影响模型训练效能的情况,提出一种基于核模糊C均值聚类的粒度支持向量机(granular support vector machine based on kernel-ba... 针对传统粒度支持向量机(granular support vector machine,GSVM)在处理大规模数据集时划分方法的随机性严重影响模型训练效能的情况,提出一种基于核模糊C均值聚类的粒度支持向量机(granular support vector machine based on kernel-based fuzzy c-means cluster,GSVM-KFCM)的方法。首先利用核映射将数据映射到高维空间进行聚类划分得到若干个信息粒,然后在每个信息粒中进行支持向量机的训练,提取出关键信息并融合建立最终决策模型。实验结果表明:该方法可以降低大规模数据集的训练时间,同时也能提高算法的准确度。 展开更多
关键词 支持向量机 模糊c均值 粒度计算 粒度支持向量机 方法
下载PDF
基于模糊C均值聚类的驾驶风格在线辨识方法研究 被引量:1
14
作者 赵朕 孙晓鹏 +2 位作者 李传友 郑大伟 刘玉博 《汽车电器》 2023年第10期67-69,共3页
驾驶员作为车辆的操纵者和道路环境的反馈者,是最难控制的因素。驾驶风格在线辨识对于提升整车的经济性有较大影响,为实时识别驾驶风格,本文提出一种基于模糊C均值聚类的驾驶风格在线辨识方法。通过采集不同驾驶员在相同路况下的商用车... 驾驶员作为车辆的操纵者和道路环境的反馈者,是最难控制的因素。驾驶风格在线辨识对于提升整车的经济性有较大影响,为实时识别驾驶风格,本文提出一种基于模糊C均值聚类的驾驶风格在线辨识方法。通过采集不同驾驶员在相同路况下的商用车驾驶数据,利用该方法进行驾驶风格的离线建模和在线识别。结果表明,新提出的方法对不同驾驶风格的辨识具有较高的准确性,并且该方法对商用车AMT挡位修正具有较好的帮助。 展开更多
关键词 模糊c均值算法 驾驶风格 在线辨识
下载PDF
基于模糊C均值聚类和梯度提升决策树的护林员评价方法
15
作者 丁鹏 徐爱俊 李义平 《河北农业大学学报》 CAS CSCD 北大核心 2023年第2期125-133,共9页
现有关于基层护林员科学、客观、精准的评价方法的研究十分缺乏,传统的人员绩效评价方法也不适用于护林员巡护情况的评价。本文以中国东南部某县级市的护林员为研究对象,自创1种基于模糊C均值聚类(Fuzzy C-means,FCM)结果和FCM隶属度以... 现有关于基层护林员科学、客观、精准的评价方法的研究十分缺乏,传统的人员绩效评价方法也不适用于护林员巡护情况的评价。本文以中国东南部某县级市的护林员为研究对象,自创1种基于模糊C均值聚类(Fuzzy C-means,FCM)结果和FCM隶属度以及梯度提升决策树相结合的护林员巡护情况评价方法。首先对护林员巡护情况数据集进行Z-Score标准化处理以提高算法的准确率和效率,其次以里程数、考勤率、耗时数和上报事件数为特征变量,使用FCM对巡护情况数据集进行聚类,确定基准月,并使用隶属度评价得分划定法计算基准月护林员评价得分,再通过梯度提升决策树(Gradient boosting decision tree,GBDT)和基准月数据确定研究期内其他月份的护林员评价得分,最后对护林员巡护情况进行综合分析。研究结果表明,该方法可精准、清晰地划定护林员巡护情况评价得分;研究期内护林员整体巡护情况偏差,评价得分≤60分的人数占比较大;常驻护林员在研究期内巡护情况评价得分基本保持不变,偶尔上下波动,毫无提升。本文的方法从实际数据出发,对护林员巡护情况进行针对性的分析,使得护林员管理者可制定科学的管理方案,并以期为护林员巡护情况的评价方法提供新的方向和思路。 展开更多
关键词 护林员 评价方法 得分 模糊c均值 隶属度 梯度提升决策树
下载PDF
基于相对熵改进模糊C均值聚类的溢流预警研究 被引量:1
16
作者 李辉 满曰南 +1 位作者 李红星 孙鹏 《钻采工艺》 CAS 北大核心 2023年第3期165-170,共6页
钻井过程中溢流的早期发现非常重要,目前国内外基于人工智能的溢流预警模型普遍使用大量先验知识或训练数据,其准确性、实时性、可靠性完全受限于先验知识和训练数据,文章提出了基于相对熵改进模糊C均值聚类的溢流预警模型,采用相对熵... 钻井过程中溢流的早期发现非常重要,目前国内外基于人工智能的溢流预警模型普遍使用大量先验知识或训练数据,其准确性、实时性、可靠性完全受限于先验知识和训练数据,文章提出了基于相对熵改进模糊C均值聚类的溢流预警模型,采用相对熵理论改进模糊C均值聚类算法,克服传统模糊C均值聚类时聚类数目由用户主动给出的缺点,并结合溢流故障的发生与立压、套压的变化趋势具有相关性的特点,建立了早期溢流智能预警模型,实现对早期溢流的及时发现。通过对现场数据的仿真分析表明,该预警模型能够通过立压和套压的斜率变化及时准确地判断是否发生溢流。 展开更多
关键词 相对熵 模糊c均值 溢流预警模型
下载PDF
面向模糊C均值算法的MAME聚类有效性指标
17
作者 唐益明 陈仁好 李冰 《智能系统学报》 CSCD 北大核心 2023年第5期945-956,共12页
聚类有效性指标可用来评估聚类结果的有效性,并且帮助判别聚类的类别数。现有的面向模糊C均值算法的聚类有效性指标存在对于类内紧致性的刻画不太到位、对于类间分离性的度量刻画不够准确的问题。为此,基于类内紧致性和类间分离性两个... 聚类有效性指标可用来评估聚类结果的有效性,并且帮助判别聚类的类别数。现有的面向模糊C均值算法的聚类有效性指标存在对于类内紧致性的刻画不太到位、对于类间分离性的度量刻画不够准确的问题。为此,基于类内紧致性和类间分离性两个角度着手设计,提出了一种新的模糊聚类有效性指标——考虑最大值和均值的指标(maximum-mean,MAME)。首先,考虑了整个数据集的综合特征,计算分别分为K类和1类的情况的比值,提出了一种新的模糊紧致性度量表达式。其次,引入最大聚类中心距离和平均聚类中心距离,提出了一种新的分离性度量方法。最后,从模糊紧致性度量表达式、分离性度量方法出发,提出了MAME指标。面向5个UCI数据集和6个人工数据集,和9个聚类有效性指标(包括CH、DB、NPC、PE、FSI、XBI、NPE、WLI和I指标)一起进行了对比实验,验证了所提指标的准确性、稳定性,说明了MAME指标的鲁棒性较好。 展开更多
关键词 模糊 模糊c均值 有效性指标 内部指标 外部指标 紧致性 分离性
下载PDF
地空协同场景下加权模糊聚类用户簇划分方法
18
作者 黄天宇 李远兴 +2 位作者 陈昊 郭紫佳 魏明军 《计算机应用》 CSCD 北大核心 2024年第5期1555-1561,共7页
为了解决应急通信场景下使用无人机作为空中基站进行辅助通信时涉及的无人机基站部署策略中的用户簇划分问题,在兼顾无人机基站性能和用户体验的条件下,提出一种基于特征加权的模糊聚类(Improved FCM)算法。首先,根据每个无人机基站的... 为了解决应急通信场景下使用无人机作为空中基站进行辅助通信时涉及的无人机基站部署策略中的用户簇划分问题,在兼顾无人机基站性能和用户体验的条件下,提出一种基于特征加权的模糊聚类(Improved FCM)算法。首先,根据每个无人机基站的信号覆盖范围和最大服务用户数量的性能约束,针对随机分布条件下的用户簇在划分过程中算法计算量大不易收敛的问题,提出一种基于距离加权的特征加权节点数据投影算法;其次,针对同一用户处于多个簇有效范围内时用户划分的有效性和无人机基站资源的最大化利用问题,提出一种基于用户位置和无人机基站负载均衡的价值加权算法。实验结果表明,所提方法充分满足无人机基站的服务性能约束,且与几何分形法(GFA)、谱聚类(Sp-C)等算法相比,特征加权模糊聚类算法获得的平均负载率和覆盖比是最优的,分别达到了0.774和0.0263,因此,该算法可为应急通信场景下的用户簇划分问题提供一种可行的解决方案。 展开更多
关键词 地空协同 应急通信 无人机辅助通信 无人机基站部署 用户簇划分 特征加权 模糊c均值
下载PDF
基于FCM聚类的光伏储能容量配置方法研究
19
作者 李浩宇 李思嘉 +1 位作者 宿月 常家维 《自动化仪表》 CAS 2024年第9期101-105,共5页
为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制... 为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制定目标及约束条件,构建分布式光伏储能容量配置模型。采用FCM聚类算法对配置模型内迭代计算的初值实施有效分配。该算法能够抑制光伏储能大容量蓄电池波动、提高储能性能和效率,从而获取最优容量配置。所提方法可以在短时间内实现储能出力,使光伏自消纳率平均值达到93.5%。该方法的分布式光伏储能容量配置效果较好。 展开更多
关键词 模糊c均值 分布式光伏 储能容量配置 功率分配 光伏消纳 电池波动 储能出力
下载PDF
基于高斯核模糊C均值聚类的光伏阵列故障诊断方法 被引量:12
20
作者 刘圣洋 冬雷 +2 位作者 王晓晓 曹晓东 廖晓钟 《太阳能学报》 EI CAS CSCD 北大核心 2021年第5期286-294,共9页
光伏阵列故障诊断过程中传统的故障特征量难以区分特征相似的单故障和多重故障情况,而实际诊断中外场实验采集到的数据也含有较强的噪声,从而导致故障诊断准确率下降。针对这一问题,提出由一个新的特征向量对不同故障进行表征,该特征向... 光伏阵列故障诊断过程中传统的故障特征量难以区分特征相似的单故障和多重故障情况,而实际诊断中外场实验采集到的数据也含有较强的噪声,从而导致故障诊断准确率下降。针对这一问题,提出由一个新的特征向量对不同故障进行表征,该特征向量包含:归一化电压V_(norm)、归一化电流I_(norm)、填充因子FF共3个特征量,并利用这3个特征量采用高斯核模糊C均值聚类(GKFCM)方法对光伏阵列中8种故障进行故障识别的方法。这3种故障特征量的结合可有效减少外界气象条件对故障识别的影响;由于GKFCM对复杂数据集具有良好的聚类性能,在复杂环境下不同故障类的识别过程中可有效提高识别准确率。该算法分为训练和测试阶段,在训练阶段对训练集中故障数据利用3个特征量构成的特征向量进行表征并聚类获取类心,在故障识别阶段新故障数据利用同样的方法获得聚类类心并与训练阶段获得的各类故障类心进行相似度计算,从而实现故障分类和新故障的识别。该方法不仅可诊断单故障情况,也可识别多重故障情况,具有较强的抗干扰能力。最后通过仿真及实验证明该方法可有效诊断光伏阵列中的常见故障。 展开更多
关键词 太阳能 光伏阵列 故障诊断 填充因子 高斯模糊c均值
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部