期刊文献+
共找到854篇文章
< 1 2 43 >
每页显示 20 50 100
基于改进灰狼优化核极限学习机的疾病诊断模型
1
作者 魏瑞芳 《科技通报》 2024年第3期47-52,共6页
为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个... 为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个疾病数据集上进行实验验证。实验结果显示:提出的模型在准确率、敏感性、特异性等评价指标方面相对于其他混合模型高出约1%~2%,带特征选择的优化模型相对于没有特征选择的模型在评价指标上也高出约1%~2%。结果表明提出的模型具有一定的优势。 展开更多
关键词 灰狼优化算法 极限学习 疾病诊断 特征选择 参数优化
下载PDF
核主元分析与优化核极限学习机模型在电石炉爆炸风险评估中的应用
2
作者 毕颖 马世杰 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2075-2084,共10页
为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性... 为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性关联,采用核主元分析(Kernel Principal Component Analysis, KPCA)进行属性约简,减少冗杂信息的干扰。其次,利用融合了Tent混沌序列、高斯变异与混沌扰动的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)寻优核极限学习机(Kernel Extreme Learning Machine, KELM)的惩罚系数与核参数,建立KPCA-ISSA-KELM风险评估模型。最后,使用该模型分析83组实例数据,选取其中59组用于模型训练,其余24组用于测试。在测试结果中,该模型正确分类了22组数据的风险等级,判别准确率为91.67%,在各项性能指标上均优于对照模型,表明该模型对电热法工艺电石炉的爆炸风险等级具备高识别精度。 展开更多
关键词 安全工程 风险评估 电石炉 主元分析(KPCA) 麻雀搜索算法(SSA) 极限学习(KELM)
下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别
3
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习 小波函数 烟叶烘烤 特征提取 识别
下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
4
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合极限学习 小波包变换 超参数优化
下载PDF
基于变分模态分解和深度多核极限学习机的轴承故障分类
5
作者 邵磊 祝晓晨 +2 位作者 李季 刘宏利 孙文涛 《天津理工大学学报》 2024年第5期32-39,共8页
针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用... 针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用天鹰优化算法(aquila optimization algorithm,AO)实现该模型超参数的优化选择。首先,以峰度指数作为鲸鱼优化算法(whale optimization algorithm,WOA)的适应度函数,对变分模态分解(variational mode decomposition,VMD)的相关参数寻优,利用最优参数组合进行VMD分解,得到k个模态分量并求其希尔伯特-黄变换(Hilbert-Huang Transform,HHT)边际谱作为特征数据,将其作为天鹰优化DHKELM分类器的输入,对不同状态的轴承故障进行识别。实验结果表明,KELM,DHKELM,天鹰优化DHKELM三种分类模型故障识别准确率分别为94%,96.67%,98.34%,运算时间分别为0.0631,0.0360,0.0175 s,证明AO-DHKELM识别准确率和运算速度均具有明显优势。 展开更多
关键词 滚动轴承 深度混合极限学习 天鹰优化算法 变分模态分解 边际谱
下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:1
6
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 极限学习 算术优化算法 水电 故障诊断
下载PDF
高光谱结合哈里斯鹰优化核极限学习机鉴别化橘红胎切片年份
7
作者 谢百亨 马晋芳 +5 位作者 周泳欣 韩雪勤 陈嘉泽 朱思祁 杨懋勋 黄富荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1494-1500,共7页
化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化... 化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化橘红胎切片样本400~1000 nm的高光谱图像。首先采用主成分分析法(PCA)分析化橘红胎切片的原始反射光谱,然后分别采用Savitzky-Golay平滑(S-G平滑)、多元散射校正(MSC)、标准正态变量交换(SNV)对样本光谱进行预处理并建立核极限学习机(KELM)模型;发现经SNV处理的样本光谱的判别准确率最高,训练集达到99.24%,测试集95.56%;进一步用竞争性自适应重加权算法(CARS)、蒙特卡洛无信息变量消除法(MCUVE)对样本光谱进行特征波长的选择;最后,采用KELM建立判别模型,同时使用哈里斯鹰算法(HHO)优化KELM参数选择并比较建模效果。结果表明:基于HHO-KELM的判别效果相较KELM有0.76%~4.44%的提升,通过MCUVE筛选所得特征波段信息冗余明显减少且精度提升,训练集和测试集最佳准确率均可达100%,故采用高光谱成像技术可以实现对不同年份的化橘红胎切片进行无损鉴别。 展开更多
关键词 化橘红胎 高光谱成像 特征波长 极限学习
下载PDF
基于核极限学习机的多标签数据流半监督在线分类方法
8
作者 王雨晨 邱士远 +1 位作者 李培培 胡学钢 《模式识别与人工智能》 EI CSCD 北大核心 2024年第8期741-754,共14页
实际应用中涌现的大量流数据具有高速到达、海量、动态变化等特点,同时,这些数据流常含有多个标签且只有少量数据被标记,从而带来多标签数据环境下的概念漂移与标签缺失问题.为此,文中提出基于核极限学习机的多标签数据流半监督在线分... 实际应用中涌现的大量流数据具有高速到达、海量、动态变化等特点,同时,这些数据流常含有多个标签且只有少量数据被标记,从而带来多标签数据环境下的概念漂移与标签缺失问题.为此,文中提出基于核极限学习机的多标签数据流半监督在线分类方法.首先,针对多标签数据流的标签缺失问题,根据滑动窗口将数据流划分为k块,对每块数据构造特征相似性矩阵和标签相似性矩阵,并加入核极限学习机的训练中.同时为了适应流数据的特点,设计增量式更新机制,构建半监督在线核极限学习机.然后,为了适应数据流中的概念漂移问题,采用基于时间戳丢弃更新的机制,预先设定数据规模,当数据到达指定规模后,丢弃最旧的无标签数据,将新的数据加入更新.最后,在10个多标签数据集上的实验表明,文中方法对标签缺失和概念漂移问题具有较强的适应能力,并能保持较优的分类效果. 展开更多
关键词 数据流分类 半监督分类 多标签分类 极限学习 概念漂移
下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究
9
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争性自适应加权采样 极限学习
下载PDF
基于差分进化改进混合核极限学习机的指纹定位
10
作者 韦嘉恒 刘伟 +2 位作者 李卓 刘博 王智豪 《中国科技论文》 CAS 2024年第5期600-606,共7页
针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动... 针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动态控制参数法避免差分进化算法陷入局部最优,然后通过改进差分进化算法自适应调整混合核极限学习机的参数,提高训练效率。在线阶段,利用混合核函数提高极限学习机的学习性能和泛化性能,并引入L1惩罚函数防止过拟合。其泛化能力相较于单一核极限学习机提升明显。该方法有92%的测试点定位误差小于0.5 m,平均误差相较于加权K近邻法(weighted Knearest neighbor,WKNN)降低了32.6%。 展开更多
关键词 混合极限学习 LOGISTIC混沌映射 差分进化算法 指纹定位
下载PDF
基于改进核极限学习机和集成算法的脱硫出口SO_(2)浓度预测
11
作者 闫浩思 赵文杰 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-117,共10页
脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限... 脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限学习机作为弱预测器,利用AdaBoost集成算法组合构建强预测器,通过调整脱硫系统不同工况下运行数据权重,建立了一种基于AdaBoost集成算法的出口SO_(2)浓度预测模型。为进一步提升模型学习性能和预测精度,通过引入惩罚系数和先验知识参数改进AdaBoost算法的损失函数,运用龙格库塔算法对KELM的正则系数C和核参数S进行寻优,克服初始参数设置对模型稳定性和预测精度的影响。最后利用电厂运行数据进行仿真实验,结果表明,所建立的出口SO_(2)浓度集成模型预测性能优越、准确度高,能够为脱硫系统优化控制提供技术支持。 展开更多
关键词 极限学习 AdaBoost集成学习 龙格库塔算法 脱硫出口SO_(2)浓度 预测模型
下载PDF
基于混核极限学习机的道路高排放源识别方法
12
作者 段培杰 李泽瑞 +3 位作者 李鲲 许镇义 吕钊 康宇 《大气与环境光学学报》 CAS CSCD 2024年第1期62-72,共11页
由于道路高排放源所产生的污染气体对环境危害巨大,因此实现对高排放源的准确识别具有重要意义。而传统的基于限值划分的识别方法及新兴的人工智能识别方法在模型选择、评价指标、识别性能等方面都存在一定的改进空间,因此针对以上问题... 由于道路高排放源所产生的污染气体对环境危害巨大,因此实现对高排放源的准确识别具有重要意义。而传统的基于限值划分的识别方法及新兴的人工智能识别方法在模型选择、评价指标、识别性能等方面都存在一定的改进空间,因此针对以上问题,提出一种基于混核极限学习机的道路高排放源识别方法。该方法使用道路遥感监测设备获取的移动源遥测数据,在核极限学习机的基础上融合不同核函数,可提升模型鲁棒性及道路高排放源识别性能。针对合肥市蜀山区真实道路遥测数据上的分析结果表明,该方法相比于其他方法具有较高的F1分数以及较低的漏报率、虚警率,证实了该方法在高排放源识别中的有效性。因此,该方法有助于对交通路网中高排放车辆进行高效识别,为进一步提升城市空气质量提供支撑。 展开更多
关键词 高排放识别 混合函数 极限学习 道路遥感监测
下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:1
13
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合极限学习 超参数优化
下载PDF
基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别 被引量:1
14
作者 汪自虎 王文天 +3 位作者 惠慧 王铭 李刚 许洪华 《高压电器》 CAS CSCD 北大核心 2024年第6期203-211,共9页
在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learn... 在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learning machine,KELM)的光伏接入配电网漏电识别方法。首先,构建了9维原始故障特征集,并采用NCA从9维特征集中选择得到4维高相关性特征子集;然后,将得到的4维特征子集作为KELM的输入,建立基于KELM的漏电识别模型,并通过麻雀搜索算法(sparrow search algorithm,SSA)对KELM模型中的参数进行优化;最后,将所提SSA-KELM方法应用于漏电识别,并与标准核极限学习机(KELM)、支持向量机(SVM)、BP神经网络(BPNN)进行了对比。比较结果表明:SSA-KELM对光伏接入配电网漏电类型的识别率最高,平均识别准确率达97.98%,为有效识别生物体触电与光伏漏电提供一定理论参考。 展开更多
关键词 光伏接入的配电网 生物触电 光伏设备漏电 近邻成分分析 极限学习 麻雀搜索算法
下载PDF
融合核极限学习机与PSR的混沌交通流预测
15
作者 夏晶晶 陈振 《计算机工程与设计》 北大核心 2024年第6期1880-1887,共8页
传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌... 传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌理论确定样本时序最佳延迟时间和嵌入维数,利用PSR对样本重构,利用优化核极限学习机建立短时混沌交通流预测模型。采用郑州市某主干路口车流实测数据进行实证分析,其结果表明,改进模型能够有效降低预测误差,实现混沌交通流实时准确预测。 展开更多
关键词 相空间重构 极限学习 交通流预测 蝴蝶优化算法 量子自适应 邻域扰动 惯性权重
下载PDF
基于樽海鞘群极限学习机的进/发一体化性能寻优控制模型研究
16
作者 于子洋 王晨 +2 位作者 杜宪 聂聆聪 孙希明 《推进技术》 EI CAS CSCD 北大核心 2024年第5期236-249,共14页
为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(... 为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(BPNN)和极限学习机(ELM)比较,结果表明,相比于BPNN,ELM,GRNN,SSA-ELM用于预测可以使安装推力的均方根误差(RMSE)分别降低7.41%,17.01%,72.57%,安装油耗的RMSE分别降低4.32%,19.41%,66.77%,具有更高的预测精度。将基于SSA-ELM的数据驱动模型作为机载模型应用到性能寻优控制,结果表明,该机载模型能够维持理想的寻优效果。针对最大安装推力模式开展实时性分析,该机载模型相比于进/发一体化部件级模型,平均计算时间由184.05 ms缩短至1.357 ms,实时性得到显著改善,大大提高了寻优效率。 展开更多
关键词 航空发动 进/发一体化 樽海鞘群优化算法 极限学习 数据驱动模型 性能寻优控制
下载PDF
基于数据驱动核极限学习机的风光容量配置方案研究
17
作者 涂菁菁 赵鹏 邹伟东 《电气应用》 2024年第10期32-38,共7页
风光发电的大量接入,将引起配电网规划与运行特征的根本性改变,因而研究配电网中风光发电的选址定容问题具有重要意义。先利用数据驱动构建基于核极限学习机的容量选择模型;再以总投资成本和网络损耗最小为目标函数,以电压稳定性为评价... 风光发电的大量接入,将引起配电网规划与运行特征的根本性改变,因而研究配电网中风光发电的选址定容问题具有重要意义。先利用数据驱动构建基于核极限学习机的容量选择模型;再以总投资成本和网络损耗最小为目标函数,以电压稳定性为评价指标对容量配置结果进行评估;最后采用IEEE 33节点系统作为算例进行仿真,将结果分别与支持向量机、粒子群和遗传算法进行比较。结果表明该容量配置方案能够起到节约成本、降低网络损耗及提高网络电压水平的作用,并能够为新能源接入配电网的投资方案提供一定的参考。 展开更多
关键词 配电网 数据驱动 极限学习 有功损耗 电压稳定
下载PDF
基于正规方程的L_(2,1)正则核极限学习机
18
作者 吴青 魏瑶 +1 位作者 马甜露 武江波 《西安邮电大学学报》 2024年第3期58-64,共7页
为了降低核极限学习机的时间复杂度,提出一种基于正规方程的L_(2,1)正则核极限学习机。将L_(2,1)范数引入核极限学习机的目标函数中,利用正规方程法求解L_(2,1)正则核极限学习机的最优输出权值,从而避免模型的过拟合问题,同时提高分类... 为了降低核极限学习机的时间复杂度,提出一种基于正规方程的L_(2,1)正则核极限学习机。将L_(2,1)范数引入核极限学习机的目标函数中,利用正规方程法求解L_(2,1)正则核极限学习机的最优输出权值,从而避免模型的过拟合问题,同时提高分类性能。实验结果表明,与传统的核极限学习机相比,所提核极限学习机能够有效减少学习过程中的大量矩阵运算,具有更快的学习速度和更高的分类准确率。 展开更多
关键词 极限学习 函数 L_(2 1)范数 极限学习 正规方程
下载PDF
基于核极限学习机的下肢关节力矩预测方法
19
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯函数 极限学习 粒子群优化算法 遗传算法 均方根误差 相关系数
下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
20
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合极限学习 贝叶斯优化
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部