为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度...为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%.展开更多
文摘为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%.
文摘针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避免算法出现一致性聚类结果。利用磷虾群算法对基于新目标函数的KFCM算法进行优化,使算法不再依赖初始聚类中心,提高算法的稳定性。基于距离最大最小原则产生多组较优的聚类中心作为初始磷虾群体并在算法迭代过程中融合一种新的精英保留策略,从而确保算法收敛到全局极值;通过对个体随机扩散活动进行分段式Logistic混沌扰动,提高算法全局寻优能力。使用KDD Cup 99入侵检测数据进行仿真实验表明,改进算法具有更好的检测性能,解决了传统的聚类算法在入侵检测中稳定性差、检测准确率低的问题。