Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission ra...Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission rate, nuclear Zipf law, bimodality, the largest fluctuation of the fragments, Δ-scaling, caloric curve, phase coexis- tence diagram, critical temperature, critical exponent analysis, negative specific heat capacity and spinodal instability etc. The systematic works of the authors on experimental and theoretical LGPT are also introduced.展开更多
基金the National Natural Science Foundation of China for the Distinguished Young Scholar (No. 19725521) the National Natural Science Foundation of China (No. 19705012)+1 种基金 the Science and Technology Development Foundation of Shanghai (No.97QA14038)the Major State Basic Research Development Program of China (No. G200077400)
文摘Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission rate, nuclear Zipf law, bimodality, the largest fluctuation of the fragments, Δ-scaling, caloric curve, phase coexis- tence diagram, critical temperature, critical exponent analysis, negative specific heat capacity and spinodal instability etc. The systematic works of the authors on experimental and theoretical LGPT are also introduced.