In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of ...In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.展开更多
The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclear matter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock app...The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclear matter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock approach by using a microscopic three-body force. It is shown that, even in the presence of the three-body force, the empirical parabolic law of the energy per nucleon vs. isospin asymmetry is fulfilled in the whole asymmetry range and also up to high density. The three-body force provides a strong enhancement of symmetry energy at high density in agreement with relativistic approaches. It also shows that the three-body force leads to a much more rapid increasing of symmetry energy with density in relatively high density region and to a much lower threshold density for the direct URCA process to occur in a neutron star as compared to the predictions adopting only pure two-body force.展开更多
The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon...The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.展开更多
文摘In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.
文摘The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclear matter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock approach by using a microscopic three-body force. It is shown that, even in the presence of the three-body force, the empirical parabolic law of the energy per nucleon vs. isospin asymmetry is fulfilled in the whole asymmetry range and also up to high density. The three-body force provides a strong enhancement of symmetry energy at high density in agreement with relativistic approaches. It also shows that the three-body force leads to a much more rapid increasing of symmetry energy with density in relatively high density region and to a much lower threshold density for the direct URCA process to occur in a neutron star as compared to the predictions adopting only pure two-body force.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10575119, 10875151, 10811130077, and 10811130560the Knowledge Innovation Project (KJCX3-SYW-N2) of the Chinese Academy of Sciences+2 种基金the Major State Basic Research Developing Program of China under Grant No. 2007CB815004the CAS/SAFEA International Partnership Program for Creative Research Teams(CXTD-J2005-1) of Chinese Academy of Sciencesthe Asia-Link project (CN/ASIA-LINK/008(94791)) of the European Commission
文摘The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.