Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested par...Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.展开更多
The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon...The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.展开更多
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A<...The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.展开更多
The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an anal...The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.展开更多
The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing ga...The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much improved and agree well with the microscopic results.展开更多
Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein intera...Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein interactions,pathways and gene expression profiles.Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases.To capture the gene-disease associations based on biological networks,a kernel-based Markov random field(MRF)method is proposed by combining graph kernels and the MRF method.In the proposed method,three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks,respectively,and a novel weighted MRF method is developed to integrate those data.In addition,an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method.Numerical experiments are carried out by integrating known gene-disease associations,protein complexes,protein-protein interactions,pathways and gene expression profiles.The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm,achieving an AUC score of 0.771 when integrating all those biological data in our experiments,which indicates that our proposed method is very promising compared with many existing methods.展开更多
We report the equation of state(EOS) of pure neutron matter(PNM) and neutron-rich matter(NRM) for the realistic Urbana V 14 two nucleon interaction,obtained by using a Variational Monte Carlo(VMC) method.Also,many bod...We report the equation of state(EOS) of pure neutron matter(PNM) and neutron-rich matter(NRM) for the realistic Urbana V 14 two nucleon interaction,obtained by using a Variational Monte Carlo(VMC) method.Also,many body interactions are included as a phenomenological density dependent term in the potential.The binding energy per nucleon is calculated for different densities and various isospin asymmetry parameters.Our results on NRM and PNM are compared with relativistic Brueckner-Hartree-Fock theory and relativistic Hartree-Fock model with the unitary correlation operator method.The results obtained in this study show reasonable agreement with both of these relativistic Hartree-Fock approaches.We also compare the binding energies obtained in this study with those obtained by various authors employing different methods and techniques.展开更多
基金The authors would like to acknowledge K.C. Chung (in memory) and C.S. Wang by their help in the beginning of this work.
文摘Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10575119, 10875151, 10811130077, and 10811130560the Knowledge Innovation Project (KJCX3-SYW-N2) of the Chinese Academy of Sciences+2 种基金the Major State Basic Research Developing Program of China under Grant No. 2007CB815004the CAS/SAFEA International Partnership Program for Creative Research Teams(CXTD-J2005-1) of Chinese Academy of Sciencesthe Asia-Link project (CN/ASIA-LINK/008(94791)) of the European Commission
文摘The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.
基金中国科学院知识创新工程项目,国家重点基础研究发展计划(973计划),the Important Pre-research Project,科技部资助项目
文摘The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.
文摘The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.
基金supported partially by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (Grant Nos.10875150 and 10875157)
文摘The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much improved and agree well with the microscopic results.
基金supported by the Natural Sciences and Engineering Research Council of CanadaNational Natural Science Foundation of China(61428209,61232001)
文摘Genes associated with similar diseases are often functionally related.This principle is largely supported by many biological data sources,such as disease phenotype similarities,protein complexes,protein-protein interactions,pathways and gene expression profiles.Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases.To capture the gene-disease associations based on biological networks,a kernel-based Markov random field(MRF)method is proposed by combining graph kernels and the MRF method.In the proposed method,three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks,respectively,and a novel weighted MRF method is developed to integrate those data.In addition,an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method.Numerical experiments are carried out by integrating known gene-disease associations,protein complexes,protein-protein interactions,pathways and gene expression profiles.The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm,achieving an AUC score of 0.771 when integrating all those biological data in our experiments,which indicates that our proposed method is very promising compared with many existing methods.
文摘We report the equation of state(EOS) of pure neutron matter(PNM) and neutron-rich matter(NRM) for the realistic Urbana V 14 two nucleon interaction,obtained by using a Variational Monte Carlo(VMC) method.Also,many body interactions are included as a phenomenological density dependent term in the potential.The binding energy per nucleon is calculated for different densities and various isospin asymmetry parameters.Our results on NRM and PNM are compared with relativistic Brueckner-Hartree-Fock theory and relativistic Hartree-Fock model with the unitary correlation operator method.The results obtained in this study show reasonable agreement with both of these relativistic Hartree-Fock approaches.We also compare the binding energies obtained in this study with those obtained by various authors employing different methods and techniques.