LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联...LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联的多层线性投影预测方法(MLPLDA:Multi-layer linear projection for predicting lncRNA-disease association).MLPLDA利用组合加权整合lncRNA和疾病的两种相似性,然后用WKNKN重构原始的lncRNA-疾病关联矩阵,最后使用堆叠层策略的多层线性投影进行lncRNA-疾病关联预测.在留一和五折交叉验证实验中,MLPLDA获得的AUC分别是0.8807和0.8563±0.0045,体现了其可靠的性能.在3种疾病(肺癌,乳腺癌和骨肉瘤)的案例研究中,MLPLDA能够有效预测与3种疾病有关系的lncRNA.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
文摘LncRNA-疾病关联预测的计算方法是解决传统生物学实验昂贵且费时的有效途径,其中基于机器学习的计算方法是当前研究热点,但其存在着未充分考虑lncRNA-疾病关联矩阵的局部结构和全局结构的问题.因此,本文提出了一种lncRNA与疾病潜在关联的多层线性投影预测方法(MLPLDA:Multi-layer linear projection for predicting lncRNA-disease association).MLPLDA利用组合加权整合lncRNA和疾病的两种相似性,然后用WKNKN重构原始的lncRNA-疾病关联矩阵,最后使用堆叠层策略的多层线性投影进行lncRNA-疾病关联预测.在留一和五折交叉验证实验中,MLPLDA获得的AUC分别是0.8807和0.8563±0.0045,体现了其可靠的性能.在3种疾病(肺癌,乳腺癌和骨肉瘤)的案例研究中,MLPLDA能够有效预测与3种疾病有关系的lncRNA.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.