Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estima...Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.展开更多
X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those...X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.展开更多
A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic...A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.展开更多
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are hig...NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are highly complementary,they have generally been used separately to address the structure and functions of biomolecular complexes.In this review,we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies.We demonstrate,using several recent examples from our own laboratory,that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes,without any prior knowledge of conformation,is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography.Thus NMR spectroscopy,in addition to answering many unique structural biology questions that can be addressed specifically by that technique,can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.展开更多
文摘Structural and compositional transitions of Datong coal ash and its CaCO3 additional effects were carefully exam- ined at a temperature range of 300 to 1 600℃ by using XRD and solid state NMR. The quantitative estimation of amorphous structures of ashes can be successfully obtained through the analyses of solid state NMR spectra. Viscosity of molten ash and its changes with CaCO3 addition were also evaluated up to 1 700 ℃ by using a rotary type viscometer. Glasses with poor crystalline and amorphous phase were continuously formed through the eutectic reaction of silica above fusing temperature (FT〉1 500 ℃) that caused broadening and shift of 29Si and 27A1 peaks in NMR results. With the additional amount of CaCO3 increasing, the peaks shifted to downfield obviously; the fraction of Si(OA1)0(OSi)4 decreased, while that of Si(OA1)l(OSi)l at 84.3 x 10-6 increased apparently. These transitions indicated the destruction of large alumina-silicate framework into small segments by the addition of Ca ion.
基金Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.
文摘A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.
基金supported by grants from the Research Grants Council of Hong Kong to M.Z.supported by the National Major Basic Research Program of China (Grant No. 2011CB910500)+3 种基金the National Natural Science Foundation of China (Grant No. 31070657)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-YW-R-154)The NMR spectrometers used in our studies were funded by donations from the Hong Kong Jockey Club Charity Foundationthe Special Equipment Grant from RGC of Hong Kong (Grant No. SEG_HKUST06)
文摘NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are highly complementary,they have generally been used separately to address the structure and functions of biomolecular complexes.In this review,we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies.We demonstrate,using several recent examples from our own laboratory,that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes,without any prior knowledge of conformation,is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography.Thus NMR spectroscopy,in addition to answering many unique structural biology questions that can be addressed specifically by that technique,can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.