To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Car...To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (T1) detector. A newly developed 75 mm × 75 mm NaI (T1) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy y-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.展开更多
The determination of the effective minimum detectable activity (MDA) of radionuclides by a detection system plays an im- portant role in environmental radiation monitoring. In this study, the responses of an NaI(TI...The determination of the effective minimum detectable activity (MDA) of radionuclides by a detection system plays an im- portant role in environmental radiation monitoring. In this study, the responses of an NaI(TI) airborne γ ray spectrometry (AGRS) system to different radionuclides (137Cs and 131I) were investigated using the Monte Carlo technique. The MDA values were determined under different conditions according to the counting spectra obtained from the Monte Carlo simulation. The equivalent mass thickness method was applied to the Monte Carlo modeling for monitoring ground radiation to reduce sta- tistical uncertainty. The secondary source method was used to monitor both air and ground radiation. A quadratic relationship was found between the MDA and activity concentration. An exponential relationship was found between the MDA and altitude The MDA of a specific radionuclide from external detectors was found to be superior to that obtained from internal detectors under the same conditions. The MDA values in an NaI(Tl) AGRS system under different conditions can be estimated based on the results of this study.展开更多
基金financial support from the International Science & Technology Cooperation Program of China (No. 2013DFR90220)National Natural Science Foundation of China (No. 41206076)Qingdao Applied Basic Research Project (NO. 14-2-4-94-jch)
文摘To develop a NaI (T1) detector for in situ radioactivity monitoring in the marine environment and enhance the confidence of the probability of the gamma-spectrum analysis, Monte Carlo simulations using the Monte Carlo N-Particle ( MNCP ) code were performed to provide the response spectra of some interested radionuclides and the background spectra originating from the natural radionuclides in seawater recorded by a NaI (T1) detector. A newly developed 75 mm × 75 mm NaI (T1) detector was calibrated using four reference radioactive sources 137Cs, 60Co, 40K and 54Mn in the laboratory before the field measurements in seawater. A simulation model was established for the detector immersed in seawater. The simulated spectra were all broadened with Gaussian pulses to reflect the statistical fluctuations and electrical noise in the real measurement. The simulated spectra show that the single-energy photons into the detector are mostly scattering low-energy photons and the high background in the low energy region mainly originates from the Compton effect of the high energy y-rays of natural radionuclides in seawater. The simulated background spectrum was compared with the experimental one recorded in field measurement and they seem to be in good agreement. The simulation method and spectra can be used for the accurate analysis of the filed measurement results of low concentration radioactivity in seawater.
基金supported by the National Defense Basic Scientific Research Project(Grant No.B2520133077)National High-tech R&D Program of China("863"Program)(Grant No.2012AA061803)
文摘The determination of the effective minimum detectable activity (MDA) of radionuclides by a detection system plays an im- portant role in environmental radiation monitoring. In this study, the responses of an NaI(TI) airborne γ ray spectrometry (AGRS) system to different radionuclides (137Cs and 131I) were investigated using the Monte Carlo technique. The MDA values were determined under different conditions according to the counting spectra obtained from the Monte Carlo simulation. The equivalent mass thickness method was applied to the Monte Carlo modeling for monitoring ground radiation to reduce sta- tistical uncertainty. The secondary source method was used to monitor both air and ground radiation. A quadratic relationship was found between the MDA and activity concentration. An exponential relationship was found between the MDA and altitude The MDA of a specific radionuclide from external detectors was found to be superior to that obtained from internal detectors under the same conditions. The MDA values in an NaI(Tl) AGRS system under different conditions can be estimated based on the results of this study.