针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least me...针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。展开更多
针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准...针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准则相结合,利用输出误差的非线性饱和特性通过随机梯度下降法更新权重.一方面利用Softplus函数的特点在保证了SP-KFLP算法具有良好的抗脉冲干扰性能的同时提高了其收敛速度;另一方面将低次幂误差的倒数作为权重向量更新公式的系数,利用误差突增使得权重向量不更新的方法来抵制冲激噪声,并对其均方收敛性进行了分析.在系统辨识环境下的仿真表明,该算法很好地兼顾了收敛速度和跟踪性能稳定误差的矛盾,在收敛速度和抗脉冲干扰鲁棒性方面优于核最小均方误差算法、核分式低次幂算法和S型核分式低次幂自适应滤波算法.展开更多
为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合...为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.展开更多
传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空...传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。展开更多
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive...Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.展开更多
文摘针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。
文摘针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准则相结合,利用输出误差的非线性饱和特性通过随机梯度下降法更新权重.一方面利用Softplus函数的特点在保证了SP-KFLP算法具有良好的抗脉冲干扰性能的同时提高了其收敛速度;另一方面将低次幂误差的倒数作为权重向量更新公式的系数,利用误差突增使得权重向量不更新的方法来抵制冲激噪声,并对其均方收敛性进行了分析.在系统辨识环境下的仿真表明,该算法很好地兼顾了收敛速度和跟踪性能稳定误差的矛盾,在收敛速度和抗脉冲干扰鲁棒性方面优于核最小均方误差算法、核分式低次幂算法和S型核分式低次幂自适应滤波算法.
文摘为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.
文摘传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。
基金National Natural Science Foundation of China(No.51467008)
文摘Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.