To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean f...To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.展开更多
基金supported by the National Key R&D Program of China(2018YFA0404402)the National Natural Science Foundation of China(11525524,12070131001,12047503,11975237,and 11961141004)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSWSYS013)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34010000 and XDPB15)。
文摘To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.