[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucl...[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucleocapsid protein N gone sequence of PRRSV were designed or synthesized, and then inserted into CMV promoter downstream to clone into pSilencer 4,1 -CMV eukaryotic expression vector. The recombinant expression vector was identified by enzyme digestion and DNA sequencing. [ Result] The results showed that the siRNA interference recombinant plasmid vector pSilencer-N targeting nucleocapsid protein gone expression had been successfully constructed. [ Conclusion] This study lays a foundation for studies on the controlling PRRSV by RNA interference technique .展开更多
The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bio...The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SAR,S-CoV. Furthermore, it was confirmed that Nl peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified and N protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.展开更多
The Crimean-congo hemorrhagic fever virus(CCHFV)is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV inf...The Crimean-congo hemorrhagic fever virus(CCHFV)is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV infections.In this study,expression vectors carrying series truncated fragments of the NP(nucleocapsid protein)gene from the S fragment of CCHFV strain YL04057 were constructed.The recombinant proteins were expressed in E.coli and purified for detection.The antigenic of the truncated fragments of NP was detected with a polyclonal serum(rabbit)and 2 monoclonal(mAbs)(14B7 and 43E5)against CCHFV by Western-blot analyses. The results showed that the three expressed constructs,which all contained the region 235AA to 305AA could be detected by mAbs polyclonal serum.The results suggest that region 235-305 aa of NP is a highly antigenic region and is highly conserved in the NP protein.展开更多
Influenza virus is a continuous and severe global threat to mankind. The continuously re-emerging disease gives rise to thousands of deaths and enormous economic losses each year, which emphasizes the urgency and nece...Influenza virus is a continuous and severe global threat to mankind. The continuously re-emerging disease gives rise to thousands of deaths and enormous economic losses each year, which emphasizes the urgency and necessity to develop high-quality influenza vaccines in a safer, more efficient and economic way. The influenza subunit and VLP vaccines, taking the advantage of recombinant DNA technologies and expression system platforms, can be produced in such an ideal way. This review summarized the recent advancements in the research and development of influenza subunit and VLP vaccines based on the recombinant expression of hemagglutinin antigen (HA), neuraminidase antigen (NA), Matrix 2 protein (M2) and nucleocapsid protein (NP). It would help to get insight into the current stage of influenza vaccines, and suggest the future design and development of novel influenza vaccines.展开更多
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability...VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.展开更多
Three pairs of specific primers were designed to amplify the F2-1, F2-2 and XF2-2 truncated sequences of ORF2 which encodes the capsid protein of porcine circovirus type 2 (PCV-2). The F2-1 sequence had most of the ...Three pairs of specific primers were designed to amplify the F2-1, F2-2 and XF2-2 truncated sequences of ORF2 which encodes the capsid protein of porcine circovirus type 2 (PCV-2). The F2-1 sequence had most of the NLS region of ORF2, but the F2-2 and XF2-2 genes had the NLS region deleted. Truncated genes were subcloned into pET-32a(+) vectors to construct recombinant fusion expression vectors. The vectors were then transformed into Rosetta(DE3) E. coli and expressed by induction of IPTG. Expressed proteins were detected by western blotting and ELISA. The protein with best immunoreactivity was confirmed and selected, then utilized to inoculate SPF rabbits to prepare polyclonal antibodies. The protein and prepared polyclonal antibody were utilized to detect sera samples against PCV-2 from Shandong province and PCV-2 particles in PK-15 cells. In our study, three recombinant fusion proteins were successfully obtained, and the molecular weights of fusion proteins were 35.9 kDa, 33.6 kDa and 38.6 kDa respectively detected by SDS-PAGE. All of the proteins showed positive reaction with anti-PCV-2 antisera, and His-XF2-2 showed better immunoreactivity than the others. The protein of His-XF2-2 was coated as antigen in ELISA to detect the seroprevalence of PCV-2 in certain districts of Shandong province, the seropositivity rate was 27.7 % (73/264). Specific fluorescence and positive signals for PCV-2 could be detected in PK-15 cells inoculated with PCV-2 with the participation of prepared antibodies against His-XF2-2 in IFA and IPMA. Experimental results indicated that the truncated PCV-20RF2 gene containing most of the NLS region was successfully expressed in E. coli, and His-XF2-2 was demonstrated to have better immunoreactivity with anti-PCV-2 antisera than the other two fusion proteins. His-XF2-2 and prepared polyclonal antibodies against it had a satisfactory capability in detecting PCV-2 infection.展开更多
The nucleocapsid protein(N) is a major structural protein of coronaviruses. The N protein of bat SARS-like coronavirus(SL-CoV) has a high similarity with that of SARS-CoV. In this study,the SL-CoV N protein was expres...The nucleocapsid protein(N) is a major structural protein of coronaviruses. The N protein of bat SARS-like coronavirus(SL-CoV) has a high similarity with that of SARS-CoV. In this study,the SL-CoV N protein was expressed in Escherichia coli,purified and used as antigen. An Indirect Enzyme-Linked Immunosorbent Assay(indirect ELISA) was developed for detection of SARS-or SL-CoV infections in bat populations. The detection of 573 bat sera with this indirect ELISA demonstrated that SL-CoVs consistently circulate in Rhinilophus species,further supporting the proposal that bats are natural reservoirs of SL-CoVs. This method uses 1-2 μl of serum sample and can be used for preliminary screening of infections by SARS-or SL-CoV with a small amount of serum sample.展开更多
Hepatitis C virus (HCV) encodes a single polyprotein, which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the s...Hepatitis C virus (HCV) encodes a single polyprotein, which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the synthesis of an additional protein. Until recently, studies of HCV have been hampered by the lack of a productive cell culture system. Since the identification of HCV genome approximately 17 years ago, structural, biochemical and biological information on HCV proteins has mainly been obtained with proteins produced by heterologous expression systems. In addition, some functional studies have also been confirmed with replicon systems or with retroviral particles pseudotyped with HCV envelope glycoproteins. The data that have accumulated on HCV proteins begin to provide a framework for understanding the molecular mechanisms involved in the major steps of HCV life cycle. Moreover, the knowledge accumulated on HCV proteins is also leading to the development of antiviral drugs among which some are showing promising results in early- phase clinical trials. This review summarizes the current knowledge on the functions and biochemical features of HCV proteins.展开更多
In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins,the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins ...In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins,the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins that can interact with the UL25 protein.C9orf69,a protein of unknown function was identified.The interaction between the two proteins under physiological conditions was also confirmed by biological experiments including co-localization by fluorescence and immunoprecipitation.A preliminary study of the function of C9orf69 showed that it promotes viral proliferation.Further studies showed that C9orf69 did not influence viral multiplication efficiency by transcriptional regulation of viral genes,but indirectly promoted proliferation via interaction with UL25.展开更多
Objective: To express the 26 kD fragment of Hantaan virus nucleocapsid protein that contains the major antigenic epitopes in insect cells, and make a preliminary analysis of its immunological characteristics. Methods:...Objective: To express the 26 kD fragment of Hantaan virus nucleocapsid protein that contains the major antigenic epitopes in insect cells, and make a preliminary analysis of its immunological characteristics. Methods: The recombinant baculovirus bac-S0.7 with the 700 bp fragment of S gene 5' terminal of Hantaan virus was constructed, and the antigenicity of the expression product was tested. Mice were injected with Sf9 cells infected by the recombinant baculovirus. The humoral and cellular immunological effects were identified by indirect immunofluorescence assay, micro-cell culture neutralization test and T lymphocytes stimulation test. Results: Immunized by bac-S0.7 infecting insect cells, specific antibody with the highest titer of 1∶1 600 was observed. The stimulation indexes of splenocytes of immunized mice to nucleocapsid protein of Hantaan virus was higher than the negative control. Conclusion: The expression product of S0.7 gene fragment in insect cells is immunogenic.展开更多
In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template ...In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.展开更多
In order to elucidate the molecular and immunological mechanisms as well as the pathogenesis of hemorrhagic fever with renal syndrome (HFRS), the CD8 + cytotoxic T lymphocytes (CTL) clone was established directly from...In order to elucidate the molecular and immunological mechanisms as well as the pathogenesis of hemorrhagic fever with renal syndrome (HFRS), the CD8 + cytotoxic T lymphocytes (CTL) clone was established directly from peripheral blood mononuclear cells (PBMC) of patients with HFRS. The activities of CTL were detected as usual with EBV-transformed lymphoblastoid cell line (BLCL) as target cells. The results showed that the CTL clone could recognized and killed the target cells with specificity of nucleocapsid protein of Hantaan virus (HTNVNP) with the cytotoxicity percentages of 50.2%, 25.4% and 39.0% respectively. These results demonstrated that the antigenic epitopes of HTNVNP mainly located on the C-terminal of the viral nucleocapsid protein.展开更多
Analysis of proteins that interact with N protein of SARS-CoV using 15-mer phage-displayed library will help to explore the virus pathogenesis and to develop new drugs and vaccines against SARS. In this study,we clone...Analysis of proteins that interact with N protein of SARS-CoV using 15-mer phage-displayed library will help to explore the virus pathogenesis and to develop new drugs and vaccines against SARS. In this study,we cloned,expressed and purified N protein of SARS-CoV. This 46-kD N protein was verified by SDS-PAGE and Western-blot. Then,the peptides binding-specific to N protein were identified using 15-mer phage-displayed library. Surprisingly,all of the 89 clones from monoclonal ELISA were positive (S/N>2.1) and the result was further confirmed experimentally once again. Six N protein-binding pep-tides,designated separately as SNA1,SNA2,SNA4,SNA5,SNA9 and SNG11,were selected for se-quencing. Sequence analysis suggested that SNA5 shared approximatively 100% sequence identity to SNA4,SNA2,SNA9 and SNA1. In addition,the binding specificity of the 15-mer peptides with the SARS-CoV N protein was further demonstrated by blocking ELISA using the synthetical 15-mer peptide according to the deduced amino acid sequence of SNA5. Also,the deduced amino sequence of SNA5 was compared with proteins in translated database using the tblastx program,and the results showed that the proteins with the highest homology were Ubiquinol-cytochrome c reductase iron-sulfur sub-units (UCRI or UQCR),otherwise known as the Rieske iron-sulfur proteins (RISP). Notablely,in the 2Fe-2S redox centre of UCRI,there were 6 residues GGW(Y)F(Y)CP compatible to the residues (po-sition 2→7,GGWFCP7) of the NH2-terminal of the 15-mer peptide,which indicated higher binding specificity between the N protein of SARS-CoV and the redox centre of UCRI to some extent. Here,the possible molecular mechanisms of SARS-CoV N protein in the pathogenesis of SARS are discussed.展开更多
Porcine epidemic diarrhea virus(PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PED...Porcine epidemic diarrhea virus(PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon(IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid(N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid(poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB(NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.展开更多
A key to tackling the coronavirus disease 2019(COVID-19)pandemic is to understand how severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)manages to outsmart host antiviral defense mechanisms.Stress granules(S...A key to tackling the coronavirus disease 2019(COVID-19)pandemic is to understand how severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)manages to outsmart host antiviral defense mechanisms.Stress granules(SGs),which are assembled during viral infection and function to sequester host and viral m RNAs and proteins,are part of the antiviral responses.Here,we show that the SARS-Co V-2 nucleocapsid(N)protein,an RNA binding protein essential for viral production,interacted with RasGTPase-activating protein SH3-domain-binding protein(G3 BP)and disrupted SG assembly,both of which require intrinsically disordered region1(IDR1)in N protein.The N protein partitioned into SGs through liquid-liquid phase separation with G3 BP,and blocked the interaction of G3 BP1 with other SG-related proteins.Moreover,the N protein domains important for phase separation with G3 BP and SG disassembly were required for SARS-Co V-2 viral production.We propose that N protein-mediated SG disassembly is crucial for SARS-Co V-2 production.展开更多
To characterize the antigenicity of nucleocapsid proteins(NP) derived from canine coronavirus(CCo V) and canine respiratory coronavirus(CRCo V) in China, the N genes of CCo V(CCo V-BJ70) and CRCo V(CRCo V-BJ202) were ...To characterize the antigenicity of nucleocapsid proteins(NP) derived from canine coronavirus(CCo V) and canine respiratory coronavirus(CRCo V) in China, the N genes of CCo V(CCo V-BJ70) and CRCo V(CRCo V-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs(r NPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCo V-BJ70 and CRCo V-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) results showed that r NPs of CCo V and CRCo V were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the r NP from CRCo V could cross-react with mice antisera against human coronavirus(HCo V-229 E, NL63, OC43, HKU1), while r NP of CCo V had cross-reactivity with only anti-sera against viruses belonging to the same group(HCo V-229 E and NL63). In summary, CCo V and CRCo V r NPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed.展开更多
Nucleocapsid(N) protein plays crucial roles in the life cycle of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), including the formation of ribonucleoprotein(RNP) complex with the viral RNA.Here we report...Nucleocapsid(N) protein plays crucial roles in the life cycle of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), including the formation of ribonucleoprotein(RNP) complex with the viral RNA.Here we reported the crystal structures of the N-terminal domain(NTD) and C-terminal domain(CTD) of the N protein and an NTD-RNA complex. Our structures reveal a unique tetramer organization of NTD and identify a distinct RNA binding mode in the NTD-RNA complex, which could contribute to the formation of the RNP complex. We also screened small molecule inhibitors of N-NTD and N-CTD and discovered that ceftriaxone sodium, an antibiotic, can block the binding of RNA to NTD and inhibit the formation of the RNP complex. These results together could facilitate the further research of antiviral drug design targeting N protein.展开更多
基金Supported by Based on Cuttingedge technology and research Project of Henan Province(072300430060)The focus of Scientific andTechnological Project of Henan Province(072102130023)Colleges and Universities of Henan Province in Support of TechnologicalInnovation Plan~~
文摘[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucleocapsid protein N gone sequence of PRRSV were designed or synthesized, and then inserted into CMV promoter downstream to clone into pSilencer 4,1 -CMV eukaryotic expression vector. The recombinant expression vector was identified by enzyme digestion and DNA sequencing. [ Result] The results showed that the siRNA interference recombinant plasmid vector pSilencer-N targeting nucleocapsid protein gone expression had been successfully constructed. [ Conclusion] This study lays a foundation for studies on the controlling PRRSV by RNA interference technique .
基金supported by the grant of Shanghai Science and Technology Committee(No.03DZ19113)National Key Basic Research Program of China(No.2001CB510006)+1 种基金863 project(No.2001AA231011)a specific project against SARS from Chinese Academy of Sciences.
文摘The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SAR,S-CoV. Furthermore, it was confirmed that Nl peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified and N protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.
基金National Key Technologies R&D Program of China during the 10th Five-Year Plan Period(2003BA712A08-03)The Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-YW-N-065)+1 种基金The Foundation scientific and technological project from MOST(2007FY210700)The NSFC Grant(30860255)
文摘The Crimean-congo hemorrhagic fever virus(CCHFV)is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV infections.In this study,expression vectors carrying series truncated fragments of the NP(nucleocapsid protein)gene from the S fragment of CCHFV strain YL04057 were constructed.The recombinant proteins were expressed in E.coli and purified for detection.The antigenic of the truncated fragments of NP was detected with a polyclonal serum(rabbit)and 2 monoclonal(mAbs)(14B7 and 43E5)against CCHFV by Western-blot analyses. The results showed that the three expressed constructs,which all contained the region 235AA to 305AA could be detected by mAbs polyclonal serum.The results suggest that region 235-305 aa of NP is a highly antigenic region and is highly conserved in the NP protein.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-EW-G-8)
文摘Influenza virus is a continuous and severe global threat to mankind. The continuously re-emerging disease gives rise to thousands of deaths and enormous economic losses each year, which emphasizes the urgency and necessity to develop high-quality influenza vaccines in a safer, more efficient and economic way. The influenza subunit and VLP vaccines, taking the advantage of recombinant DNA technologies and expression system platforms, can be produced in such an ideal way. This review summarized the recent advancements in the research and development of influenza subunit and VLP vaccines based on the recombinant expression of hemagglutinin antigen (HA), neuraminidase antigen (NA), Matrix 2 protein (M2) and nucleocapsid protein (NP). It would help to get insight into the current stage of influenza vaccines, and suggest the future design and development of novel influenza vaccines.
文摘VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.
基金supported by the special studies for social welfare researches in institutes (2005DIB4J041)
文摘Three pairs of specific primers were designed to amplify the F2-1, F2-2 and XF2-2 truncated sequences of ORF2 which encodes the capsid protein of porcine circovirus type 2 (PCV-2). The F2-1 sequence had most of the NLS region of ORF2, but the F2-2 and XF2-2 genes had the NLS region deleted. Truncated genes were subcloned into pET-32a(+) vectors to construct recombinant fusion expression vectors. The vectors were then transformed into Rosetta(DE3) E. coli and expressed by induction of IPTG. Expressed proteins were detected by western blotting and ELISA. The protein with best immunoreactivity was confirmed and selected, then utilized to inoculate SPF rabbits to prepare polyclonal antibodies. The protein and prepared polyclonal antibody were utilized to detect sera samples against PCV-2 from Shandong province and PCV-2 particles in PK-15 cells. In our study, three recombinant fusion proteins were successfully obtained, and the molecular weights of fusion proteins were 35.9 kDa, 33.6 kDa and 38.6 kDa respectively detected by SDS-PAGE. All of the proteins showed positive reaction with anti-PCV-2 antisera, and His-XF2-2 showed better immunoreactivity than the others. The protein of His-XF2-2 was coated as antigen in ELISA to detect the seroprevalence of PCV-2 in certain districts of Shandong province, the seropositivity rate was 27.7 % (73/264). Specific fluorescence and positive signals for PCV-2 could be detected in PK-15 cells inoculated with PCV-2 with the participation of prepared antibodies against His-XF2-2 in IFA and IPMA. Experimental results indicated that the truncated PCV-20RF2 gene containing most of the NLS region was successfully expressed in E. coli, and His-XF2-2 was demonstrated to have better immunoreactivity with anti-PCV-2 antisera than the other two fusion proteins. His-XF2-2 and prepared polyclonal antibodies against it had a satisfactory capability in detecting PCV-2 infection.
基金The State Key Program for Basic Research Grant (2005CB523004) The Knowledge InnovationProgram Key Project (KSCX1-YW-R-07).
文摘The nucleocapsid protein(N) is a major structural protein of coronaviruses. The N protein of bat SARS-like coronavirus(SL-CoV) has a high similarity with that of SARS-CoV. In this study,the SL-CoV N protein was expressed in Escherichia coli,purified and used as antigen. An Indirect Enzyme-Linked Immunosorbent Assay(indirect ELISA) was developed for detection of SARS-or SL-CoV infections in bat populations. The detection of 573 bat sera with this indirect ELISA demonstrated that SL-CoVs consistently circulate in Rhinilophus species,further supporting the proposal that bats are natural reservoirs of SL-CoVs. This method uses 1-2 μl of serum sample and can be used for preliminary screening of infections by SARS-or SL-CoV with a small amount of serum sample.
文摘Hepatitis C virus (HCV) encodes a single polyprotein, which is processed by cellular and viral proteases to generate 10 polypeptides. The HCV genome also contains an overlapping +1 reading frame that may lead to the synthesis of an additional protein. Until recently, studies of HCV have been hampered by the lack of a productive cell culture system. Since the identification of HCV genome approximately 17 years ago, structural, biochemical and biological information on HCV proteins has mainly been obtained with proteins produced by heterologous expression systems. In addition, some functional studies have also been confirmed with replicon systems or with retroviral particles pseudotyped with HCV envelope glycoproteins. The data that have accumulated on HCV proteins begin to provide a framework for understanding the molecular mechanisms involved in the major steps of HCV life cycle. Moreover, the knowledge accumulated on HCV proteins is also leading to the development of antiviral drugs among which some are showing promising results in early- phase clinical trials. This review summarizes the current knowledge on the functions and biochemical features of HCV proteins.
基金Scientific Research Fund of the Institute of Pathogen Biology (2007IPB10)
文摘In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins,the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins that can interact with the UL25 protein.C9orf69,a protein of unknown function was identified.The interaction between the two proteins under physiological conditions was also confirmed by biological experiments including co-localization by fluorescence and immunoprecipitation.A preliminary study of the function of C9orf69 showed that it promotes viral proliferation.Further studies showed that C9orf69 did not influence viral multiplication efficiency by transcriptional regulation of viral genes,but indirectly promoted proliferation via interaction with UL25.
基金National Natural Science Foundation of China (No.30070686)Chinese Educational Deputy Fund for skeleton teachers
文摘Objective: To express the 26 kD fragment of Hantaan virus nucleocapsid protein that contains the major antigenic epitopes in insect cells, and make a preliminary analysis of its immunological characteristics. Methods: The recombinant baculovirus bac-S0.7 with the 700 bp fragment of S gene 5' terminal of Hantaan virus was constructed, and the antigenicity of the expression product was tested. Mice were injected with Sf9 cells infected by the recombinant baculovirus. The humoral and cellular immunological effects were identified by indirect immunofluorescence assay, micro-cell culture neutralization test and T lymphocytes stimulation test. Results: Immunized by bac-S0.7 infecting insect cells, specific antibody with the highest titer of 1∶1 600 was observed. The stimulation indexes of splenocytes of immunized mice to nucleocapsid protein of Hantaan virus was higher than the negative control. Conclusion: The expression product of S0.7 gene fragment in insect cells is immunogenic.
基金This work was supported by the European Commission (SARS-DTV ) SP22-CT-2004–511064)the State Key Laboratory of Pathogen and Biosecunity SKLPBS0918
文摘In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.
文摘In order to elucidate the molecular and immunological mechanisms as well as the pathogenesis of hemorrhagic fever with renal syndrome (HFRS), the CD8 + cytotoxic T lymphocytes (CTL) clone was established directly from peripheral blood mononuclear cells (PBMC) of patients with HFRS. The activities of CTL were detected as usual with EBV-transformed lymphoblastoid cell line (BLCL) as target cells. The results showed that the CTL clone could recognized and killed the target cells with specificity of nucleocapsid protein of Hantaan virus (HTNVNP) with the cytotoxicity percentages of 50.2%, 25.4% and 39.0% respectively. These results demonstrated that the antigenic epitopes of HTNVNP mainly located on the C-terminal of the viral nucleocapsid protein.
基金the Science and Technology Project of Chongqing Municipal Educa- tion Commission, China (Grant No. KJ071109)the Key Project of the Ministry of Science and Technology of China (Grant No. 2003CB514120)
文摘Analysis of proteins that interact with N protein of SARS-CoV using 15-mer phage-displayed library will help to explore the virus pathogenesis and to develop new drugs and vaccines against SARS. In this study,we cloned,expressed and purified N protein of SARS-CoV. This 46-kD N protein was verified by SDS-PAGE and Western-blot. Then,the peptides binding-specific to N protein were identified using 15-mer phage-displayed library. Surprisingly,all of the 89 clones from monoclonal ELISA were positive (S/N>2.1) and the result was further confirmed experimentally once again. Six N protein-binding pep-tides,designated separately as SNA1,SNA2,SNA4,SNA5,SNA9 and SNG11,were selected for se-quencing. Sequence analysis suggested that SNA5 shared approximatively 100% sequence identity to SNA4,SNA2,SNA9 and SNA1. In addition,the binding specificity of the 15-mer peptides with the SARS-CoV N protein was further demonstrated by blocking ELISA using the synthetical 15-mer peptide according to the deduced amino acid sequence of SNA5. Also,the deduced amino sequence of SNA5 was compared with proteins in translated database using the tblastx program,and the results showed that the proteins with the highest homology were Ubiquinol-cytochrome c reductase iron-sulfur sub-units (UCRI or UQCR),otherwise known as the Rieske iron-sulfur proteins (RISP). Notablely,in the 2Fe-2S redox centre of UCRI,there were 6 residues GGW(Y)F(Y)CP compatible to the residues (po-sition 2→7,GGWFCP7) of the NH2-terminal of the 15-mer peptide,which indicated higher binding specificity between the N protein of SARS-CoV and the redox centre of UCRI to some extent. Here,the possible molecular mechanisms of SARS-CoV N protein in the pathogenesis of SARS are discussed.
基金Project supported by the National Natural Science Foundation of China(No.31702250)the Key Research and Development Project Funds of Zhejiang Provincial Science and Technology Department(Nos.2015C02044 and 2018C02028)+2 种基金the Agricultural Technology Extension Funds of Zhejiang Universitythe Dabei Agricultural Discipline Development and Talent Training Fund(No.2017ZDNT004)the Three Rural and Six Party Funds,China
文摘Porcine epidemic diarrhea virus(PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon(IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid(N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid(poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB(NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
基金supported by the National Natural Science Foundation of China(81830004,31970755,and 31970173)the Local Grant(608285568031)。
文摘A key to tackling the coronavirus disease 2019(COVID-19)pandemic is to understand how severe acute respiratory syndrome coronavirus 2(SARS-Co V-2)manages to outsmart host antiviral defense mechanisms.Stress granules(SGs),which are assembled during viral infection and function to sequester host and viral m RNAs and proteins,are part of the antiviral responses.Here,we show that the SARS-Co V-2 nucleocapsid(N)protein,an RNA binding protein essential for viral production,interacted with RasGTPase-activating protein SH3-domain-binding protein(G3 BP)and disrupted SG assembly,both of which require intrinsically disordered region1(IDR1)in N protein.The N protein partitioned into SGs through liquid-liquid phase separation with G3 BP,and blocked the interaction of G3 BP1 with other SG-related proteins.Moreover,the N protein domains important for phase separation with G3 BP and SG disassembly were required for SARS-Co V-2 viral production.We propose that N protein-mediated SG disassembly is crucial for SARS-Co V-2 production.
基金supported by the Mega project for Infectious Disease Research of China (2014ZX10004001-002, 2013ZX10004601)National Basic Research Program of China (2011CB504704)
文摘To characterize the antigenicity of nucleocapsid proteins(NP) derived from canine coronavirus(CCo V) and canine respiratory coronavirus(CRCo V) in China, the N genes of CCo V(CCo V-BJ70) and CRCo V(CRCo V-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs(r NPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCo V-BJ70 and CRCo V-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) results showed that r NPs of CCo V and CRCo V were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the r NP from CRCo V could cross-react with mice antisera against human coronavirus(HCo V-229 E, NL63, OC43, HKU1), while r NP of CCo V had cross-reactivity with only anti-sera against viruses belonging to the same group(HCo V-229 E and NL63). In summary, CCo V and CRCo V r NPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed.
基金supported by Beijing Natural Science Foundation(M21016)Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-003 and 2021-CAMS-JZ004)+1 种基金Tsinghua-Peking Center for Life Sciences (045-61020100122)Beijing Advanced Innovation Center for Structural Biology
文摘Nucleocapsid(N) protein plays crucial roles in the life cycle of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), including the formation of ribonucleoprotein(RNP) complex with the viral RNA.Here we reported the crystal structures of the N-terminal domain(NTD) and C-terminal domain(CTD) of the N protein and an NTD-RNA complex. Our structures reveal a unique tetramer organization of NTD and identify a distinct RNA binding mode in the NTD-RNA complex, which could contribute to the formation of the RNP complex. We also screened small molecule inhibitors of N-NTD and N-CTD and discovered that ceftriaxone sodium, an antibiotic, can block the binding of RNA to NTD and inhibit the formation of the RNP complex. These results together could facilitate the further research of antiviral drug design targeting N protein.