典型相关分析(canonical correlation analysis,CCA)是寻找同一对象两组变量间线性相关性的一种常用的多元统计分析方法,其采用的欧氏距离度量方式导致了算法的非鲁棒性。核诱导的距离度量不仅在理论上被证明是鲁棒的,而且在(聚类)应用...典型相关分析(canonical correlation analysis,CCA)是寻找同一对象两组变量间线性相关性的一种常用的多元统计分析方法,其采用的欧氏距离度量方式导致了算法的非鲁棒性。核诱导的距离度量不仅在理论上被证明是鲁棒的,而且在(聚类)应用上获得了有效验证。将其进一步应用于CCA,发展出了核诱导距离度量的鲁棒CCA(CCA based on kernel-induced measure,KI-CCA)。该算法不仅克服了CCA非鲁棒的不足,而且使现有基于最大相关熵的鲁棒主成分分析(half-quadratic principal component analysis,HQ-PCA)成为特例,且具有非线性相关分析的能力。一方面,核的多样性使得KI-CCA也具有多样性,从而使其成为一般性的分析算法。另一方面,与CCA刻画上的相似性,使其求解可归结为广义特征值问题。在人工数据、多特征手写体数据库(multiple feature database,MFD)和人脸数据集(Yale、AR、ORL)上的实验验证了该算法的有效性。展开更多
提出了基于核诱导距离度量的鲁棒判别分析算法(robust discriminant analysis based on kernel-induced distance measure,KI-RDA)。KI-RDA不仅自然地推广了线性判别分析(linear discriminant analysis,LDA),而且推广了最近提出的强有...提出了基于核诱导距离度量的鲁棒判别分析算法(robust discriminant analysis based on kernel-induced distance measure,KI-RDA)。KI-RDA不仅自然地推广了线性判别分析(linear discriminant analysis,LDA),而且推广了最近提出的强有力的基于非参数最大熵的鲁棒判别分析(robust discriminant analysis based on nonparametric maximum entropy,MaxEnt-RDA)。通过采用鲁棒径向基核,KI-RDA不仅能有效处理含噪数据,而且也适合处理非高斯分布的非线性数据,其本质的鲁棒性归咎于KI-RDA通过核诱导的非欧距离代替LDA的欧氏距离来刻画类间散度和类内散度。借助这些散度,为特征提取定义类似LDA的判别准则,导致了相应的非线性优化问题。进一步借助近似策略,将优化问题转化为直接可解的广义特征值问题,由此获得降维变换(矩阵)的闭合解。最后在多类数据集上进行实验,验证了KI-RDA的有效性。由于核的多样性,使KI-RDA事实上成为了一个一般性判别分析框架。展开更多
文摘典型相关分析(canonical correlation analysis,CCA)是寻找同一对象两组变量间线性相关性的一种常用的多元统计分析方法,其采用的欧氏距离度量方式导致了算法的非鲁棒性。核诱导的距离度量不仅在理论上被证明是鲁棒的,而且在(聚类)应用上获得了有效验证。将其进一步应用于CCA,发展出了核诱导距离度量的鲁棒CCA(CCA based on kernel-induced measure,KI-CCA)。该算法不仅克服了CCA非鲁棒的不足,而且使现有基于最大相关熵的鲁棒主成分分析(half-quadratic principal component analysis,HQ-PCA)成为特例,且具有非线性相关分析的能力。一方面,核的多样性使得KI-CCA也具有多样性,从而使其成为一般性的分析算法。另一方面,与CCA刻画上的相似性,使其求解可归结为广义特征值问题。在人工数据、多特征手写体数据库(multiple feature database,MFD)和人脸数据集(Yale、AR、ORL)上的实验验证了该算法的有效性。
文摘提出了基于核诱导距离度量的鲁棒判别分析算法(robust discriminant analysis based on kernel-induced distance measure,KI-RDA)。KI-RDA不仅自然地推广了线性判别分析(linear discriminant analysis,LDA),而且推广了最近提出的强有力的基于非参数最大熵的鲁棒判别分析(robust discriminant analysis based on nonparametric maximum entropy,MaxEnt-RDA)。通过采用鲁棒径向基核,KI-RDA不仅能有效处理含噪数据,而且也适合处理非高斯分布的非线性数据,其本质的鲁棒性归咎于KI-RDA通过核诱导的非欧距离代替LDA的欧氏距离来刻画类间散度和类内散度。借助这些散度,为特征提取定义类似LDA的判别准则,导致了相应的非线性优化问题。进一步借助近似策略,将优化问题转化为直接可解的广义特征值问题,由此获得降维变换(矩阵)的闭合解。最后在多类数据集上进行实验,验证了KI-RDA的有效性。由于核的多样性,使KI-RDA事实上成为了一个一般性判别分析框架。