期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
核邻域保持判别嵌入在人脸识别中的应用
1
作者 王燕 白万荣 《计算机工程》 CAS CSCD 2012年第1期163-164,167,共3页
为更有效地进行数据降维,将核映射思想引入到邻域保持判别嵌入中,提出一种核邻域保持判别嵌入的流形学习算法。以类内相似度矩阵与类间散度矩阵之差作为鉴别准则,使类间散度矩阵不受满秩的约束,从而解决人脸数据的非线性和小样本问题。... 为更有效地进行数据降维,将核映射思想引入到邻域保持判别嵌入中,提出一种核邻域保持判别嵌入的流形学习算法。以类内相似度矩阵与类间散度矩阵之差作为鉴别准则,使类间散度矩阵不受满秩的约束,从而解决人脸数据的非线性和小样本问题。在ORL和Yale人脸库上的实验结果表明,该算法具有较好的人脸识别性能。 展开更多
关键词 方法 邻域保持判别嵌入 数据降维 流形学习 人脸识别
下载PDF
基于核邻域保持判别嵌入的人脸识别 被引量:3
2
作者 张大尉 朱善安 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第10期1842-1847,共6页
为了提取高维人脸图像中的非线性特征,提出一种新的非线性降维方法:核邻域保持判别嵌入算法(KNP-DE).为了表示特征空间中类间邻域结构和不同类样本间的相似度,分别构建类内邻接矩阵和类间相似度矩阵.通过使用核技巧,KNPDE将邻域保持嵌入... 为了提取高维人脸图像中的非线性特征,提出一种新的非线性降维方法:核邻域保持判别嵌入算法(KNP-DE).为了表示特征空间中类间邻域结构和不同类样本间的相似度,分别构建类内邻接矩阵和类间相似度矩阵.通过使用核技巧,KNPDE将邻域保持嵌入(NPE)和Fisher判别准则相结合,在保持特征空间中类内邻域结构的同时充分利用类间判别信息,从而具有更强的分类能力.在Yale和UMIST人脸库上的试验结果进一步表明了该算法的有效性. 展开更多
关键词 人脸识别 邻域保持判别嵌入(knpde) 非线性降维 技巧 类内邻接矩阵 类间相似度矩阵
下载PDF
一种邻域保持判别嵌入人脸识别方法 被引量:14
3
作者 杜海顺 柴秀丽 +1 位作者 汪凤泉 张帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期625-629,共5页
邻域保持嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构信息的能力。为了进一步提高NPE的性能,本文提出了一种邻域保持判别嵌入(NPDE)算法,并将其用于人脸识别。在NPDE算法中引入了数据集的判别信息,在保持局部邻域结... 邻域保持嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构信息的能力。为了进一步提高NPE的性能,本文提出了一种邻域保持判别嵌入(NPDE)算法,并将其用于人脸识别。在NPDE算法中引入了数据集的判别信息,在保持局部邻域结构信息的同时,具有更强的判别力。在Yale和ORL人脸数据库上的实验结果表明,本文提出的NPDE用于人脸识别具有较高的识别率。 展开更多
关键词 邻域保持嵌入 邻域保持判别嵌入 流形学习 人脸识别
下载PDF
完备正交邻域保持判别嵌入的人脸识别
4
作者 陈达遥 陈伟琦 陈秀宏 《计算机应用》 CSCD 北大核心 2013年第9期2667-2670,2689,共5页
为解决邻域保持判别嵌入算法所面临的小样本问题,并充分利用类内邻域散度矩阵零空间和非零空间中的判别信息进行人脸识别,提出一种完备正交邻域保持判别嵌入的人脸识别算法。首先间接地利用特征分解方法去除总体邻域散度矩阵的零空间;... 为解决邻域保持判别嵌入算法所面临的小样本问题,并充分利用类内邻域散度矩阵零空间和非零空间中的判别信息进行人脸识别,提出一种完备正交邻域保持判别嵌入的人脸识别算法。首先间接地利用特征分解方法去除总体邻域散度矩阵的零空间;然后分别在类内邻域散度矩阵零空间和非零空间中提取最优判别矢量。此外,为进一步提高算法的识别性能,给出了基于瘦QR分解的正交投影矩阵的求解方法。在ORL和Yale人脸库上验证了以上算法的有效性。 展开更多
关键词 人脸识别 特征提取 零空间 非零空间 邻域保持判别嵌入
下载PDF
基于正交邻域保持嵌入与多核相关向量机的滚动轴承早期故障诊断 被引量:13
5
作者 陈法法 杨晓青 +2 位作者 陈保家 程珩 肖文荣 《计算机集成制造系统》 EI CSCD 北大核心 2018年第8期1946-1954,共9页
针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对... 针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对多域特征向量进行约简降维处理,获取最能反映滚动轴承早期故障运行状态变化的低维敏感特征,随后将获取的低维敏感特征输入给多核RVM进行早期故障模式的分类辨识。通过分析滚动轴承早期故障的模拟实验数据表明,该方法对高维复杂的非线性早期故障特征具有良好的约简降维性能,而且比单一核函数RVM具有更好的诊断精度。 展开更多
关键词 正交邻域保持嵌入 相关向量机 滚动轴承 早期故障 故障诊断
下载PDF
基于判别邻域嵌入算法的说话人识别 被引量:4
6
作者 梁春燕 袁文浩 +2 位作者 李艳玲 夏斌 孙文珠 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1774-1778,共5页
该文提出一种基于判别邻域嵌入(DNE)算法的说话人识别。判别邻域嵌入算法作为流形学习方法的一种,可以通过构建邻接图获取数据的局部邻域结构信息;同时该算法可以充分利用类间判别信息,具有更强的判别能力。在美国国家标准技术研究院201... 该文提出一种基于判别邻域嵌入(DNE)算法的说话人识别。判别邻域嵌入算法作为流形学习方法的一种,可以通过构建邻接图获取数据的局部邻域结构信息;同时该算法可以充分利用类间判别信息,具有更强的判别能力。在美国国家标准技术研究院2010年说话人识别评测(NISTSRE2010)电话-电话核心测试集上的实验结果表明了该算法的有效性。 展开更多
关键词 说话人识别 总变化因子分析 邻域保持嵌入 判别邻域嵌入
下载PDF
一种半监督判别邻域嵌入算法 被引量:2
7
作者 刘志宇 《计算机工程与应用》 CSCD 北大核心 2011年第19期173-175,181,共4页
邻域保持嵌入(Neighborhood Preserving Embedding,NPE),作为局部线性嵌入(Locally Linear Embedding,LLE)的线性化版本,由于在映射前后保持了数据的局部几何结构并得到了原始数据的子空间描述,在模式识别领域具有较强的应用价值。但作... 邻域保持嵌入(Neighborhood Preserving Embedding,NPE),作为局部线性嵌入(Locally Linear Embedding,LLE)的线性化版本,由于在映射前后保持了数据的局部几何结构并得到了原始数据的子空间描述,在模式识别领域具有较强的应用价值。但作为非监督处理算法,在具体的模式分类中有一定局限性,提出一种NPE的改进算法——半监督判别邻域嵌入(SSDNE)算法,引入标记后样本点的类别信息,并在正则项中引入样本的流形结构,最大化标记样本点的类间信息和类内信息。既增加了算法的辨别能力又减少了监督算法中对样本点进行全标记的工作量。在ORL和YaleB人脸库上的实验结果表明,改进的算法较PCA、LDA、LPP以及原保持近邻判别嵌入算法的识别性能有了较明显的改善。 展开更多
关键词 邻域保持嵌入 线性辨别分析 流形 半监督判别邻域嵌入 人脸识别
下载PDF
基于t分布随机邻域嵌入算法的工业过程故障分类 被引量:4
8
作者 陶飞 苗爱敏 +2 位作者 李鹏 曹敏 李维 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第3期332-339,共8页
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)... 针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。 展开更多
关键词 t分布随机邻域嵌入 工业过程 费舍判别分析 支持向量机 田纳西-伊士曼过程 主元分析法 拉普拉斯特征映射
下载PDF
核岭回归的邻域保持最大间隔分析的人脸识别 被引量:7
9
作者 李勇周 罗大庸 刘少强 《模式识别与人工智能》 EI CSCD 北大核心 2010年第1期23-28,共6页
邻域保持嵌入是局部线性嵌入的线性近似,强调保持数据流形的局部结构.改进的最大间隔准则重视数据流形的判别和几何结构,提高了对数据的分类性能.文中提出的核岭回归的邻域保持最大间隔分析既保持流形的局部结构,又使不同类别的数据保... 邻域保持嵌入是局部线性嵌入的线性近似,强调保持数据流形的局部结构.改进的最大间隔准则重视数据流形的判别和几何结构,提高了对数据的分类性能.文中提出的核岭回归的邻域保持最大间隔分析既保持流形的局部结构,又使不同类别的数据保持最大间隔,以此构建算法的目标函数.为了解决数据流形高度非线性化的问题,算法采用核岭回归计算特征空间的变换矩阵.先求解数据样本在核子空间中降维映射的结果,再解得核子空间.在标准人脸数据库上的实验表明该算法正确有效,并且识别性能优于普通的流形学习算法. 展开更多
关键词 人脸识别 邻域保持嵌入 最大间隔准则 岭回归
原文传递
基于改进KNPE算法的化工过程故障检测 被引量:4
10
作者 李军祥 李春阳 夏丽莎 《计算机应用研究》 CSCD 北大核心 2021年第5期1459-1462,共4页
核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组... 核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组合核函数的邻域保持嵌入(CKNPE)算法。该算法在注重数据局部学习能力的同时增强了外推、预测能力,更多地保留了原始数据的特征信息。通过田纳西—伊斯曼(TE)仿真实验,与CKPCA、CMKPCA算法进行横向比较,并与NPE、KNPE算法进行纵向比较,证明了CKNPE算法对非线性故障检测的优越性。 展开更多
关键词 化工生产 组合函数 邻域保持嵌入算法 故障检测
下载PDF
基于SPA间歇过程故障诊断的MKNPE算法 被引量:7
11
作者 赵小强 王涛 《兰州理工大学学报》 CAS 北大核心 2016年第3期82-87,共6页
非线性特性是工业过程的显著特性,特别是间歇过程有着更强的非线性,而且传统方法只是对数据的协方差矩阵进行分解,忽略数据高阶统计量信息,从而无法充分提取非线性过程的有效信息导致诊断效果不佳.针对以上问题,提出了基于统计量的多向... 非线性特性是工业过程的显著特性,特别是间歇过程有着更强的非线性,而且传统方法只是对数据的协方差矩阵进行分解,忽略数据高阶统计量信息,从而无法充分提取非线性过程的有效信息导致诊断效果不佳.针对以上问题,提出了基于统计量的多向核邻域保持嵌入算法.该算法首先引入统计量模式分析方法(SPA)将样本数据投影到统计量样本空间中,可以更充分地提取非线性数据的高阶统计量信息;然后在统计量空间中通过核函数将统计量样本映射到高维核空间,用以解决数据的非线性;最后在高维核空间中应用邻域保持嵌入算法充分提取数据的局部结构来对间歇过程进行监控,检测到过程故障后用变量贡献图法诊断出故障变量.通过青霉素发酵过程验证了该算法对强非线性的间歇过程故障诊断是有效的. 展开更多
关键词 间歇过程 故障诊断 统计量模式分析(SPA) 多向邻域保持嵌入(MKNPE)
下载PDF
KNPE算法在化工过程故障检测中的应用 被引量:3
12
作者 李春阳 夏丽莎 李军祥 《控制工程》 CSCD 北大核心 2020年第1期92-97,共6页
化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上... 化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上,能够更好地提取数据的非线性结构。通过以田纳西-伊斯曼(TE)仿真过程为例,构造T2和SPE统计量进行故障检测,证明了KNPE方法比NPE和KPCA方法能够更快更准确的检测出非线性故障的发生。 展开更多
关键词 化工故障 流形学习 邻域保持嵌入算法 故障检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部