期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进KNPE算法的化工过程故障检测 被引量:4
1
作者 李军祥 李春阳 夏丽莎 《计算机应用研究》 CSCD 北大核心 2021年第5期1459-1462,共4页
核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组... 核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组合核函数的邻域保持嵌入(CKNPE)算法。该算法在注重数据局部学习能力的同时增强了外推、预测能力,更多地保留了原始数据的特征信息。通过田纳西—伊斯曼(TE)仿真实验,与CKPCA、CMKPCA算法进行横向比较,并与NPE、KNPE算法进行纵向比较,证明了CKNPE算法对非线性故障检测的优越性。 展开更多
关键词 化工生产 组合函数 核邻域保持嵌入算法 故障检测
下载PDF
KNPE算法在化工过程故障检测中的应用 被引量:3
2
作者 李春阳 夏丽莎 李军祥 《控制工程》 CSCD 北大核心 2020年第1期92-97,共6页
化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上... 化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上,能够更好地提取数据的非线性结构。通过以田纳西-伊斯曼(TE)仿真过程为例,构造T2和SPE统计量进行故障检测,证明了KNPE方法比NPE和KPCA方法能够更快更准确的检测出非线性故障的发生。 展开更多
关键词 化工故障 流形学习 核邻域保持嵌入算法 故障检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部