AIM: To investigate genetic diversity of Helicobacter pylori (H. pylorl) cell division-related gene A (cdrA) and its effect on the host response.METHODS: Inactivation of H. py/ori cdrA, which is involved in ceil...AIM: To investigate genetic diversity of Helicobacter pylori (H. pylorl) cell division-related gene A (cdrA) and its effect on the host response.METHODS: Inactivation of H. py/ori cdrA, which is involved in ceil division and morphological elonga- tion, has a role in chronic persistent infections. Ge- netic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure in- terleukin-8 (IL-8) secretion with gastric biopsy speci- mens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co- cultured with wild-type HPK5 (cdrA-positive) or its de- rivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (transloca- tion and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-~:B) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPKSCA (cagA- disruptant) by western blotting analysis with immuno- precipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (al- lele types, I and 11 ) and cdrA-negative (allele types; 111 and IV) categories, respectively. Almost all Japanese isolates were cdrA-positive ( 1 : 7.8% and 11 : 90.2%), whereas 16.9% of American isolates were cdrA-positive (11) and 83.1% were cdrA-negative (nl: 37.7% and IV: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA al- lele and 6 of them exhibited a different cdrA category between two regions in the stomach. Furthermore, in 5 of the 6 cases possessing a different cdrA category, cdrA-negative isolate existed in the corpus, suggesting that cdrA-negative strain is more adaptable to coloni- zation in the corpus. IL-8 secretions from AGS revealed that IL-8 levels induced by a cdrA-disrupted HPKT510 was significantly lower (P 〈 0.01) compared to wild- type HPK5: corresponding to 50%-60% of those of wild-type HPK5. These data coincided with in vivo data that an average value of IL-8 in biopsy specimens from cdrA-positive and cdrA-negative groups was 215.6 and 135.9 pg/mL, respectively. Western blotting analysis documented that HPKT510 had no effect on CagA translocation and phosphorylation, however, nuclear accumulation of NF-κB was lower by HPKT510 com- pared to HPK5. CONCLUSION: Colonization by a cdrA-negative or cdrA-dysfunctional strain resulted in decreased IL-8 production and repression of NF-κB, and hence, atten- uate the host immunity leading to persistent infection.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand h...Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-Co V-2 Rd Rp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. However, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from +1 to-1 site is hindered thermodynamically as the posttranslocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall,our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-Co V-2 Rd Rp.展开更多
DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in ...DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in cellular division is to replicate DNA so that copies can be distributed to daughter cells. Additionally, DNA is involved in transcribing proteins that direct cell growth and activities. However, DNA is tightly packed into genes and chromosomes. In order for replication or transcription to take place, DNA must firstly unpack itself so that it can interact with enzymes. DNA packing can be visualized as two very long strands that have been intertwined millions of times, tied into knots, and subjected to successive coiling. However, replication and transcription are much easier to accomplish if the DNA is neatly arranged rather than tangled up in knots. Enzymes are essential to unpacking DNA. Enzymes act to slice through individual knots and reconnect strands in a more orderly way. Hypothesizing that Termination of DNA replication proteins gave rise to those of eukaryotes during evolution, we chose the DNA polymerase (which infects microalgae) as the basis of this analysis, as it represents a primitive recombination. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal DNA are near the root of the containing all recombination. DNA polymerase delta members but that this does not contain the polymerases of other DNA. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA. DNA can be visualized as a complicated knot that must be unknotted by enzymes in order for replication or transcription to occur. It is perhaps not surprising then that connections between mathematical knot theory and biology have been discovered. By thinking of DNA as a knot, we can use knot theory to estimate how hard DNA is to unknot. This can help us estimate properties of the enzymes that unknot DNA.展开更多
基金Supported by The Project Research Fund from Kochi University,to Takeuchi Ha Grant-in-Aid for Scientific Research from the Ministry of Education,Science and Culture of Japan,No. 21590631 and 21590629,in part
文摘AIM: To investigate genetic diversity of Helicobacter pylori (H. pylorl) cell division-related gene A (cdrA) and its effect on the host response.METHODS: Inactivation of H. py/ori cdrA, which is involved in ceil division and morphological elonga- tion, has a role in chronic persistent infections. Ge- netic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure in- terleukin-8 (IL-8) secretion with gastric biopsy speci- mens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co- cultured with wild-type HPK5 (cdrA-positive) or its de- rivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (transloca- tion and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-~:B) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPKSCA (cagA- disruptant) by western blotting analysis with immuno- precipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (al- lele types, I and 11 ) and cdrA-negative (allele types; 111 and IV) categories, respectively. Almost all Japanese isolates were cdrA-positive ( 1 : 7.8% and 11 : 90.2%), whereas 16.9% of American isolates were cdrA-positive (11) and 83.1% were cdrA-negative (nl: 37.7% and IV: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA al- lele and 6 of them exhibited a different cdrA category between two regions in the stomach. Furthermore, in 5 of the 6 cases possessing a different cdrA category, cdrA-negative isolate existed in the corpus, suggesting that cdrA-negative strain is more adaptable to coloni- zation in the corpus. IL-8 secretions from AGS revealed that IL-8 levels induced by a cdrA-disrupted HPKT510 was significantly lower (P 〈 0.01) compared to wild- type HPK5: corresponding to 50%-60% of those of wild-type HPK5. These data coincided with in vivo data that an average value of IL-8 in biopsy specimens from cdrA-positive and cdrA-negative groups was 215.6 and 135.9 pg/mL, respectively. Western blotting analysis documented that HPKT510 had no effect on CagA translocation and phosphorylation, however, nuclear accumulation of NF-κB was lower by HPKT510 com- pared to HPK5. CONCLUSION: Colonization by a cdrA-negative or cdrA-dysfunctional strain resulted in decreased IL-8 production and repression of NF-κB, and hence, atten- uate the host immunity leading to persistent infection.
基金supported by the National Key RD program of China(No.2021YFA1502300)the National Natural Science Foundation of China(No.21733007)。
文摘Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-Co V-2 Rd Rp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. However, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from +1 to-1 site is hindered thermodynamically as the posttranslocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall,our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-Co V-2 Rd Rp.
文摘DNA is the genetic material of all cells, containing coded information about cellular molecules and processes. DNA consists of two polynucleofide strands twisted around each other in a double helix. The first step in cellular division is to replicate DNA so that copies can be distributed to daughter cells. Additionally, DNA is involved in transcribing proteins that direct cell growth and activities. However, DNA is tightly packed into genes and chromosomes. In order for replication or transcription to take place, DNA must firstly unpack itself so that it can interact with enzymes. DNA packing can be visualized as two very long strands that have been intertwined millions of times, tied into knots, and subjected to successive coiling. However, replication and transcription are much easier to accomplish if the DNA is neatly arranged rather than tangled up in knots. Enzymes are essential to unpacking DNA. Enzymes act to slice through individual knots and reconnect strands in a more orderly way. Hypothesizing that Termination of DNA replication proteins gave rise to those of eukaryotes during evolution, we chose the DNA polymerase (which infects microalgae) as the basis of this analysis, as it represents a primitive recombination. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal DNA are near the root of the containing all recombination. DNA polymerase delta members but that this does not contain the polymerases of other DNA. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA. DNA can be visualized as a complicated knot that must be unknotted by enzymes in order for replication or transcription to occur. It is perhaps not surprising then that connections between mathematical knot theory and biology have been discovered. By thinking of DNA as a knot, we can use knot theory to estimate how hard DNA is to unknot. This can help us estimate properties of the enzymes that unknot DNA.