期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于子图选择和图核降维的脑网络分类方法 被引量:5
1
作者 王立鹏 费飞 +1 位作者 接标 张道强 《计算机科学与探索》 CSCD 2014年第10期1246-1253,共8页
脑网络分类在脑科学研究和脑疾病诊断等领域引起了学者们的广泛关注。目前大多数有关脑网络分类的研究都是以单个脑区或成对脑区之间的相关性作为分类特征,其缺点是不能反映多个脑区之间的拓扑结构信息。为克服上述缺点,提出了一种基于... 脑网络分类在脑科学研究和脑疾病诊断等领域引起了学者们的广泛关注。目前大多数有关脑网络分类的研究都是以单个脑区或成对脑区之间的相关性作为分类特征,其缺点是不能反映多个脑区之间的拓扑结构信息。为克服上述缺点,提出了一种基于子图选择和图核降维的脑网络分类方法。具体包括:(1)分别从正类训练样本组及负类训练样本组中提取多个频繁子图,进而利用基于频度差的子图选择算法选取最具判别性的子图集;(2)基于上述过程中得到的子图集,利用图核主成分分析(graph-kernel-based principal component analysis,GK-PCA)方法对经过子图选择后的图数据进行特征提取;(3)利用支持向量机(support vector machine,SVM)在特征提取后的数据上进行分类。在真实的轻度认知障碍(mild cognitive impairment,MCI)脑网络数据集上对该方法进行了验证,实验结果表明了该方法的有效性。 展开更多
关键词 子图挖掘 特征选择 核降维 脑网络分类
下载PDF
基于伪柯西类核函数的主成分降维方法 被引量:3
2
作者 刘文博 梁盛楠 《东北师大学报(自然科学版)》 北大核心 2021年第3期30-35,共6页
构造了伪柯西类核函数并给出了相应的理论证明.利用伪柯西类核函数对4个癌症基因表达数据集进行降维,然后利用支持向量机、K近邻和朴素贝叶斯进行分类预测.实验结果表明,与高斯核、多项式核、双曲正切核降维以及全变量情形相比,在多数... 构造了伪柯西类核函数并给出了相应的理论证明.利用伪柯西类核函数对4个癌症基因表达数据集进行降维,然后利用支持向量机、K近邻和朴素贝叶斯进行分类预测.实验结果表明,与高斯核、多项式核、双曲正切核降维以及全变量情形相比,在多数情况下,基于伪柯西类核函数进行的维度约减,可使得目前主流机器学习方法的分类精度达到最优. 展开更多
关键词 核降维 伪柯西类函数 分类预测 数据
下载PDF
基于核矩阵降维算法对药物不良反应的预测
3
作者 匡启帆 郭佳丽 +1 位作者 李益洲 李梦龙 《中国科技论文》 北大核心 2017年第24期2845-2849,共5页
药物不良反应(drug adverse reactions,ADRs)的早期准确鉴定对药物研发和临床用药安全具有重要的实际意义。基于计算机辅助预测药物的不良反应已经引起了越来越多的重视。将一种核矩阵降维(kernel matrix dimension reduction,KMDR)算... 药物不良反应(drug adverse reactions,ADRs)的早期准确鉴定对药物研发和临床用药安全具有重要的实际意义。基于计算机辅助预测药物的不良反应已经引起了越来越多的重视。将一种核矩阵降维(kernel matrix dimension reduction,KMDR)算法应用于药物不良反应的统计预测中,考察该方法在药物不良反应上的预测性能。通过与其他两种参考算法在相同标准数据集上进行交叉验证和独立测试的计算实验表明,KMDR算法是一种值得推广的预测药物不良反应的候选统计算法。 展开更多
关键词 化学信息学 药物不良反应预测 矩阵算法
下载PDF
小数据集下基于DRKDE-ICSO的BN结构学习
4
作者 陈海洋 刘静 +1 位作者 刘喜庆 张静 《空军工程大学学报》 CSCD 北大核心 2024年第2期100-109,共10页
为了解决在小数据集条件下进行数据拓展时产生数据高度相似的问题,提出了基于降维核密度估计的小数据集拓展方法,从而得到较为准确的拓展数据。另外,针对鸡群优化算法求解效率低下和收敛性不足的问题,提出改进的鸡群优化算法进行结构学... 为了解决在小数据集条件下进行数据拓展时产生数据高度相似的问题,提出了基于降维核密度估计的小数据集拓展方法,从而得到较为准确的拓展数据。另外,针对鸡群优化算法求解效率低下和收敛性不足的问题,提出改进的鸡群优化算法进行结构学习:在雄鸡的位置更新公式中引入莱维飞行,使鸡群算法具有更强的跳跃能力;采用指数递减的动态调节惯性权重,以加速局部搜索和提高收敛速度;通过引入最优个体引导策略,增加找到较优位置的概率。实验结果表明,所提算法在小数据集条件下,BIC评分、准确率及汉明距离等指标均优于MCMC算法、BPSO算法、CSO算法、ADLCSO-I算法和SA-ICSO算法。 展开更多
关键词 鸡群算法 飞行 密度 结构学习
下载PDF
基于核主成分分析BP_Ada Boost算法的数控铣床故障诊断 被引量:6
5
作者 朱翔 谢峰 《机械强度》 CAS CSCD 北大核心 2019年第6期1292-1297,共6页
刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利... 刀具是数控铣床加工过程的关键零部件,其长期处于高速加工状态极其容易出现故障。针对数控铣床加工过程中刀具的磨损状态数据少、诊断效率低、维护成本高、缺乏有效的诊断方法的问题,提出了利用小波包分析与核主成分分析提取特征,然后利用BP_AdaBoost算法对刀具磨损状态进行诊断的方法。通过在数控铣床的加工工件与其夹具间安装测力仪及安装加速度传感器,来采集立铣刀振动信号与切削力信号;然后对振动信号与切削力信号进行小波包分析处理,将处理好的信号进行核主成分分析(KPCA),降维以后作为立铣刀磨损状态的特征向量;最后利用得到的特征向量训练和验证BP_AdaBoost分类模型。实验结果表明BP_AdaBoost算法比SVM算法能更有效实现对数控铣床的刀具磨损状态的评估。 展开更多
关键词 刀具磨损状态 切削力信号 加速度信号 小波包分析 主成分分析 BP_AdaBoost
下载PDF
基于KPCA-K-means-GRU的短期风电功率预测研究 被引量:4
6
作者 徐艳 周建勋 +2 位作者 金鑫 王仕通 易灵芝 《电机与控制应用》 2023年第2期49-55,共7页
风能间歇性和波动性的特点给电网的平稳运行造成了很大的挑战,导致电网企业限制风电并网,造成弃风行为。因此,实时有效地预测风力发电情况对风电开发和电网的平稳运行至关重要。在分析当前多种预测方法后,提出了基于核主成分分析-K均值... 风能间歇性和波动性的特点给电网的平稳运行造成了很大的挑战,导致电网企业限制风电并网,造成弃风行为。因此,实时有效地预测风力发电情况对风电开发和电网的平稳运行至关重要。在分析当前多种预测方法后,提出了基于核主成分分析-K均值聚类-门控循环单元(KPCA-K-means-GRU)的短期风电功率预测模型。多维数据能够较好地还原实际物理状态,但过高维度的数据会带来维数灾难。因此,利用非线性的KPCA在保留高维数据信息的同时降低数据维度。随后借鉴负荷预测相似日思路,将降维后的数据通过K-means进行无监督聚类以建立不同的预测模型来提高预测精度。最后分别训练不同类别数据的GRU神经网络参数,进行分类预测以获得更合适的网络模型。 展开更多
关键词 短期风电功率预测 主成分分析 门控循环单元网络 组合模型
下载PDF
基于多分类支持向量机的相控阵雷达T/R组件寿命分布仿真识别 被引量:2
7
作者 蒋伟 王挺 +1 位作者 盛文 鲁力 《兵器装备工程学报》 CAS 北大核心 2018年第11期89-93,共5页
为了能够对T/R组件的寿命分布类型进行快速准确地识别,在充分分析T/R组件寿命分布数据特点的基础上,建立了核主元降维-多分类支持向量机识别模型。首先对T/R组件的数据特征以及可能的分布模式进行选取,其次利用Matlab仿真软件产生100组... 为了能够对T/R组件的寿命分布类型进行快速准确地识别,在充分分析T/R组件寿命分布数据特点的基础上,建立了核主元降维-多分类支持向量机识别模型。首先对T/R组件的数据特征以及可能的分布模式进行选取,其次利用Matlab仿真软件产生100组不同分布的随机数,构建了模型的初始训练样本,最后利用核主元降维分析法的非线性主元特征提取能力以及多分类支持向量机模型的高精度识别能力,对T/R组件的寿命分布类型进行识别。实例计算表明,该识别模型具有较高的识别精度,与传统极大似然估计和k-s检验法的T/R组件寿命分布结果一致,从而证实了模型的正确性,为后续T/R组件的维修提供理论依据。 展开更多
关键词 T/R组件 寿命分布 主元 支持向量机 k-s检验
下载PDF
基于关节空时特征融合的人体行为识别 被引量:7
8
作者 吕洁 李洪奇 +2 位作者 赵艳红 Sikandar Ali 刘艳芳 《计算机工程与设计》 北大核心 2020年第1期246-252,共7页
针对现有人体行为识别技术存在的准确率不高和易受环境干扰等缺点,提出一种基于空时特征融合的人体行为识别方法。通过OpenPose提取人体骨骼关节的位置信息用于构造空时融合特征,该特征综合各类行为的空域和时域信息,使得特征表示更具... 针对现有人体行为识别技术存在的准确率不高和易受环境干扰等缺点,提出一种基于空时特征融合的人体行为识别方法。通过OpenPose提取人体骨骼关节的位置信息用于构造空时融合特征,该特征综合各类行为的空域和时域信息,使得特征表示更具区分度。利用核化主成分分析算法进行特征维度缩减,利用XGBoost算法进行特征分类,获得识别结果。该方法在Multiview Action 3D数据集上进行测试,得到了94.52%的识别率,较现有的其它许多人体行为识别方法表现更好。 展开更多
关键词 行为识别 空时融合特征 梯度树提升 化线性 人体骨架
下载PDF
KERNEL NEIGHBORHOOD PRESERVING EMBEDDING FOR CLASSIFICATION 被引量:2
9
作者 Tao Xiaoyan Ji Hongbing Men Jian 《Journal of Electronics(China)》 2009年第3期374-379,共6页
The Neighborhood Preserving Embedding(NPE) algorithm is recently proposed as a new dimensionality reduction method.However, it is confined to linear transforms in the data space.For this, based on the NPE algorithm, a... The Neighborhood Preserving Embedding(NPE) algorithm is recently proposed as a new dimensionality reduction method.However, it is confined to linear transforms in the data space.For this, based on the NPE algorithm, a new nonlinear dimensionality reduction method is proposed, which can preserve the local structures of the data in the feature space.First, combined with the Mercer kernel, the solution to the weight matrix in the feature space is gotten and then the corresponding eigenvalue problem of the Kernel NPE(KNPE) method is deduced.Finally, the KNPE algorithm is resolved through a transformed optimization problem and QR decomposition.The experimental results on three real-world data sets show that the new method is better than NPE, Kernel PCA(KPCA) and Kernel LDA(KLDA) in performance. 展开更多
关键词 Kernel Neighborhood Preserving Embedding (KNPE) Neighborhood structure FEATUREEXTRACTION QR decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部