We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the si...We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the size of bimetallic particles could be controlled in convenient way. The formation of core-shell structure was proved by UV-Vis spectra, transmission electron microscopy(TEM), etc.. The core-shell particles showed a more narrow size distribution than Ag colloid prepared without Au core. The SERS activity of the core-shell particles was investigated by using 2,4-dimethylpyridine as the probe, which strongly indicated their potential application in SERS substrate materials.展开更多
In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and...In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.展开更多
Preparation method of magnetic nanoparticles with core-shell structure was introduced,especially focusing on the preparation principle of sol-gel method,microemulsion method,and self-assembly technique.The application...Preparation method of magnetic nanoparticles with core-shell structure was introduced,especially focusing on the preparation principle of sol-gel method,microemulsion method,and self-assembly technique.The application of core-shell nanoparticles in precision machining was discussed.The Fe_(3)O_(4)@SiO_(2)composite particles were prepared by sol-gel method and were applied to the magnetorheological polishing of titanium alloy plates.Results show that core-shell nanoparticles with higher surface quality can be obtained after processing,compared with those after conventional abrasives.After polishing for 20 min,the surface roughness of the workpiece reaches 23 nm and the scratches are effectively reduced.Finally,the preparation and application of coreshell nanoparticles are summarized and prospected to provide a reference for further research on core-shell nanoparticles.展开更多
文摘We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the size of bimetallic particles could be controlled in convenient way. The formation of core-shell structure was proved by UV-Vis spectra, transmission electron microscopy(TEM), etc.. The core-shell particles showed a more narrow size distribution than Ag colloid prepared without Au core. The SERS activity of the core-shell particles was investigated by using 2,4-dimethylpyridine as the probe, which strongly indicated their potential application in SERS substrate materials.
基金Supported by the Natural Science Foundation of Heilongjiang Province(B201010)the Education Department of Heilongjiang Province(12511595)
文摘In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.
基金National Natural Science Foundation of China(52265056)Lanzhou Youth Talent Project(2023-QN-38)Hongliu Youth Fund of Lanzhou University of Technology(07/062004)。
文摘Preparation method of magnetic nanoparticles with core-shell structure was introduced,especially focusing on the preparation principle of sol-gel method,microemulsion method,and self-assembly technique.The application of core-shell nanoparticles in precision machining was discussed.The Fe_(3)O_(4)@SiO_(2)composite particles were prepared by sol-gel method and were applied to the magnetorheological polishing of titanium alloy plates.Results show that core-shell nanoparticles with higher surface quality can be obtained after processing,compared with those after conventional abrasives.After polishing for 20 min,the surface roughness of the workpiece reaches 23 nm and the scratches are effectively reduced.Finally,the preparation and application of coreshell nanoparticles are summarized and prospected to provide a reference for further research on core-shell nanoparticles.