超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分...超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分割结果。然而,SLIC算法尚存在一些问题。基于优化加权核K-means聚类初始中心点,提出一种新的SLIC算法(WKK-SLIC算法)。算法基于图像像素之间的颜色相似性和空间相似性度量,采用超像素分割的归一化割公式,使用核函数来近似相似性度量。算法将像素值和坐标映射到高维特征空间中,通过对该特征空间中的每个点赋予适当的权重,使加权K均值和归一化割的目标函数的优化在数学上等价。从而通过在所提出的特征空间中迭代地应用简单的K-means聚类来优化归一化割的目标函数。在WKK-SLIC算法中,采用密度敏感的相似性度量计算空间像素点的密度,启发式地生成K-means聚类的初始中心以达到稳定的聚类结果。实验结果表明,WKK-SLIC算法在评估超像素分割的几个标准上优于SLIC算法。展开更多
针对基于核的多视图聚类算法(kernel based multi-view clustering method,MVKKM)在处理大规模数据集时运行时间长的缺点,引入增量聚类模型的概念,将MVKKM算法与增量聚类模型相结合,提出基于核K-means的多视图增量聚类算法(incremental ...针对基于核的多视图聚类算法(kernel based multi-view clustering method,MVKKM)在处理大规模数据集时运行时间长的缺点,引入增量聚类模型的概念,将MVKKM算法与增量聚类模型相结合,提出基于核K-means的多视图增量聚类算法(incremental multi-view clustering algorithm based on kernel K-means,IMVCKM)。通过将数据集分块,在每个数据块中使用M VKKM算法聚类,并将每个数据块的聚类中心作为下个数据块的初始聚类中心。将所有块的聚类中心进行整合后再次进行多视图聚类,得到最终的聚类结果。试验结果表明,在3个大规模数据集上,IMVCKM算法相较于MVKKM算法在3个评价指标上具有更好的聚类结果,且运行时间更短。该算法在保证聚类性能的基础上大大降低算法的运行时间。展开更多
针对目前指纹室内定位系统指纹库管理效率低、实时性差和定位精度低的问题,提出了一种新的基于核化K-means和SVM分类回归的无线定位算法。首先利用核化K-means算法将输入的预处理后的RSS(Received Signal Strength)信号进行无监督聚类,...针对目前指纹室内定位系统指纹库管理效率低、实时性差和定位精度低的问题,提出了一种新的基于核化K-means和SVM分类回归的无线定位算法。首先利用核化K-means算法将输入的预处理后的RSS(Received Signal Strength)信号进行无监督聚类,将聚类后的数据信息存入指纹特征数据库,然后通过SVM回归的机器学习算法对特征数据库的数据进行训练,得到一种最优的拟合位置函数的数学模型。并且采用粒子群算法对参数进行寻优,进行实验仿真。实验结果表明,该算法有效地提升了定位精度,优于KNN、WKNN、SVR等室内定位算法。展开更多
文摘超像素是近年来快速发展的一种图像预处理技术,被广泛应用于计算机视觉领域。简单线性迭代聚类(simple linear iterative clustering,SLIC)算法是其中的一种图像预处理技术框架,该算法根据像素的颜色和距离特征进行聚类来实现良好的分割结果。然而,SLIC算法尚存在一些问题。基于优化加权核K-means聚类初始中心点,提出一种新的SLIC算法(WKK-SLIC算法)。算法基于图像像素之间的颜色相似性和空间相似性度量,采用超像素分割的归一化割公式,使用核函数来近似相似性度量。算法将像素值和坐标映射到高维特征空间中,通过对该特征空间中的每个点赋予适当的权重,使加权K均值和归一化割的目标函数的优化在数学上等价。从而通过在所提出的特征空间中迭代地应用简单的K-means聚类来优化归一化割的目标函数。在WKK-SLIC算法中,采用密度敏感的相似性度量计算空间像素点的密度,启发式地生成K-means聚类的初始中心以达到稳定的聚类结果。实验结果表明,WKK-SLIC算法在评估超像素分割的几个标准上优于SLIC算法。
文摘针对基于核的多视图聚类算法(kernel based multi-view clustering method,MVKKM)在处理大规模数据集时运行时间长的缺点,引入增量聚类模型的概念,将MVKKM算法与增量聚类模型相结合,提出基于核K-means的多视图增量聚类算法(incremental multi-view clustering algorithm based on kernel K-means,IMVCKM)。通过将数据集分块,在每个数据块中使用M VKKM算法聚类,并将每个数据块的聚类中心作为下个数据块的初始聚类中心。将所有块的聚类中心进行整合后再次进行多视图聚类,得到最终的聚类结果。试验结果表明,在3个大规模数据集上,IMVCKM算法相较于MVKKM算法在3个评价指标上具有更好的聚类结果,且运行时间更短。该算法在保证聚类性能的基础上大大降低算法的运行时间。
文摘针对目前指纹室内定位系统指纹库管理效率低、实时性差和定位精度低的问题,提出了一种新的基于核化K-means和SVM分类回归的无线定位算法。首先利用核化K-means算法将输入的预处理后的RSS(Received Signal Strength)信号进行无监督聚类,将聚类后的数据信息存入指纹特征数据库,然后通过SVM回归的机器学习算法对特征数据库的数据进行训练,得到一种最优的拟合位置函数的数学模型。并且采用粒子群算法对参数进行寻优,进行实验仿真。实验结果表明,该算法有效地提升了定位精度,优于KNN、WKNN、SVR等室内定位算法。