With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A t...With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A total of 36 species of mycorrhizal fungi associated with oaks were observed. The results showed that the occurrence of mycorrhizal fungi was related to tree species, tree ages, and months of the year, with at least 20 fungi species being associated with more than two oak species. The highest Sim…展开更多
The biotransformation of artemisinin by hairy root cultures ofRheum palmatum L. was investigated for the first time. The main product, deoxyartemisinin, was isolated and characterized on the basis of its spectral data.
The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli ...The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli at all those frequencies have a larger total number and a larger total length of roots and a smaller permeability of root plasma-membrane, compared with those cultivated in an environment without vibration stress. Vibration at respectively 1 Hz, 2 Hz, 3 Hz and 4 Hz enhances root activity and the 3 Hz vibration is the most favorable. There is an obvious negative correlation between root activity and permeability of root plasma-membrane. The effects may be explained by the likelihood that mechanical Vibration at an appropriate frequency facilitates roots' absorbing water and minerals which are indispensable to inducing and synthesizing in roots some active substances favorable to growth. Nevertheless, overstress damages the integrity of root plasm-membrane, increases the permeability, and results in the disability of protecting root cells.展开更多
基金Project supported by the National Natural Science Foundation of China (No. XSFC70373044) the Knowledge Innovation Program of the Chinese Academy of Sciences (No. C12SD)
文摘With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A total of 36 species of mycorrhizal fungi associated with oaks were observed. The results showed that the occurrence of mycorrhizal fungi was related to tree species, tree ages, and months of the year, with at least 20 fungi species being associated with more than two oak species. The highest Sim…
文摘The biotransformation of artemisinin by hairy root cultures ofRheum palmatum L. was investigated for the first time. The main product, deoxyartemisinin, was isolated and characterized on the basis of its spectral data.
基金Funded by the Natural Science Foundation of China (No. 39770206).
文摘The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli at all those frequencies have a larger total number and a larger total length of roots and a smaller permeability of root plasma-membrane, compared with those cultivated in an environment without vibration stress. Vibration at respectively 1 Hz, 2 Hz, 3 Hz and 4 Hz enhances root activity and the 3 Hz vibration is the most favorable. There is an obvious negative correlation between root activity and permeability of root plasma-membrane. The effects may be explained by the likelihood that mechanical Vibration at an appropriate frequency facilitates roots' absorbing water and minerals which are indispensable to inducing and synthesizing in roots some active substances favorable to growth. Nevertheless, overstress damages the integrity of root plasm-membrane, increases the permeability, and results in the disability of protecting root cells.