A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lo...A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.展开更多
Field portable X-ray fluorescence (PXRF) spectrometry has become an increasingly popular technique for in-situ elemental characterization of soils. The technique is fast, portable, and accurate, requiring minimal sa...Field portable X-ray fluorescence (PXRF) spectrometry has become an increasingly popular technique for in-situ elemental characterization of soils. The technique is fast, portable, and accurate, requiring minimal sample preparation and no consumables. However, soil moisture 〉 20% has been known to cause fluorescence denudation and error in elemental reporting and few studies have evaluated the presence of soil moisture in solid form as ice. Gelisols (USDA Soil Taxonomy), permafrost-affected soils, cover a large amount of the land surface in the northern and southern hemispheres. Thus, the applicability of PXRF in those areas requires further investigation. PXRF was used to scan the elemental composition (Ba, Ca, Cr, Fe, K, Mn, Pb, Rb, Sr, Ti, Zn, and Zr) of 13 pedons in central and northern Alaska, USA. Four types of scans were completed: 1) in-situ frozen soil, 2) re-frozen soil in the laboratory, 3) melted soil/water mixture in the laboratory, and 4) moisture-corrected soil. All were then compared to oven dry soil scans. Results showed that the majority of PXRF readings from in-situ, re-frozen, and melted samples were significantly underestimated, compared to the readings on oven dry samples, owing to the interference expected by moisture. However, when the moisture contents were divided into 〉 40% and 〈 40〈 groups, the PXRF readings under different scanning conditions performed better in the group with 〈 40% moisture contents. Most elements of the scans on the melted samples with 〈 40% moisture contents acceptably compared to those of the dry samples, with R2 values ranging from 0.446 (Mn) to 0.930 (St). However, underestimation of the melted samples was still quite apparent. Moisture-corrected sample PXRF readings provided the best correlation to those of the dry, ground samples as indicated by higher R2 values, lower root mean square errors (RMSEs), and slopes closer to 1 in linear regression equations. However, the in-situ (frozen) sample scans did not differ appreciably from the melted sample scans in their correlations to dry sample scans in terms of R2 values (0.81 vs. 0.88), RMSEs (1.06 vs. 0.85), and slopes (0.88 vs. 0.92). Notably, all of those relationships improved for the group with moisture contents 〈 40%.展开更多
基金supported by Massey University and the Centre for Sustainable Forest Management at Forest Research Institute, New Zealand
文摘A study was carried out to investigate changes in the soil plant-available P,the P nutrition and the growth of Pinus radiata seedlings grown in association with understory,broom(Cytisus scoparius L.) or ryegrass(Lolium multiflorum) on Orthic Allophanic Soil,following the application of three rates of triple superphosphate(TSP)(0,50,and 100 mg·kg^-1P) under a glasshouse condition.The application of P fertilizer enhanced P availability in the rhizospheric of radiata seedlings and the bulk soils in a P-deficient site.P availability in the rhizospheric soils of ryegrass and broom,grown in association with radiata,were also increased by the presence of radiata roots.P concentrations in new shoot needles,old shoot needles,stem and roots of radiata pine increased with increase rates of TSP application,but the effects of ryegrass and broom on P nutrition of radiata seedlings depended on the soil P status.In the absence of P fertilizer addition(control treatment),P concentrations in new shoot needles,old shoot needles,stem,and roots of radiata grown in association with broom were higher than those with ryegrass,whereas,when P fertilizer was added(50 and 100 mg·kg^-1) the P concentration was lower.This is probably related to the growth of broom that may have removed much of the plant-available P in the soil as indicated by the consistently lower Bray-2 P concentration in the rhizosphere soil of radiata in association with broom than that in the rhizosphere soil of radiata in association with grass at the two high P rates.Furthermore,in the high P fertile soil(application rate of 100 mg·kg^-1),the dry matter yield of radiata was lower when it was grown with broom than with ryegrass.This result suggests that in moderate to high P fertile soils,P.radiata seedlings grow better with ryegrass than with broom,because broom grows vigorously in high P fertile soil and competes with P.radiata for P and perhaps for other nutrients as well.
文摘Field portable X-ray fluorescence (PXRF) spectrometry has become an increasingly popular technique for in-situ elemental characterization of soils. The technique is fast, portable, and accurate, requiring minimal sample preparation and no consumables. However, soil moisture 〉 20% has been known to cause fluorescence denudation and error in elemental reporting and few studies have evaluated the presence of soil moisture in solid form as ice. Gelisols (USDA Soil Taxonomy), permafrost-affected soils, cover a large amount of the land surface in the northern and southern hemispheres. Thus, the applicability of PXRF in those areas requires further investigation. PXRF was used to scan the elemental composition (Ba, Ca, Cr, Fe, K, Mn, Pb, Rb, Sr, Ti, Zn, and Zr) of 13 pedons in central and northern Alaska, USA. Four types of scans were completed: 1) in-situ frozen soil, 2) re-frozen soil in the laboratory, 3) melted soil/water mixture in the laboratory, and 4) moisture-corrected soil. All were then compared to oven dry soil scans. Results showed that the majority of PXRF readings from in-situ, re-frozen, and melted samples were significantly underestimated, compared to the readings on oven dry samples, owing to the interference expected by moisture. However, when the moisture contents were divided into 〉 40% and 〈 40〈 groups, the PXRF readings under different scanning conditions performed better in the group with 〈 40% moisture contents. Most elements of the scans on the melted samples with 〈 40% moisture contents acceptably compared to those of the dry samples, with R2 values ranging from 0.446 (Mn) to 0.930 (St). However, underestimation of the melted samples was still quite apparent. Moisture-corrected sample PXRF readings provided the best correlation to those of the dry, ground samples as indicated by higher R2 values, lower root mean square errors (RMSEs), and slopes closer to 1 in linear regression equations. However, the in-situ (frozen) sample scans did not differ appreciably from the melted sample scans in their correlations to dry sample scans in terms of R2 values (0.81 vs. 0.88), RMSEs (1.06 vs. 0.85), and slopes (0.88 vs. 0.92). Notably, all of those relationships improved for the group with moisture contents 〈 40%.