期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不同冲洗液对机用镍钛锉预备根管数和预备效率的影响 被引量:4
1
作者 郝文君 刘海云 +2 位作者 包佳昕 李长健 李岩峰 《中华老年口腔医学杂志》 2018年第3期133-136,共4页
目的:探索根管预备时不同冲洗液直接冲洗机用镍钛锉对其预备根管数及预备单个根管提拉次数(预备效率)的影响。方法:按照根管冲洗液的不同,将100支机用镍钛锉(型号为ProTaper Universal F1)随机分为5组,每组20根,分别为A组:无菌蒸馏水组;... 目的:探索根管预备时不同冲洗液直接冲洗机用镍钛锉对其预备根管数及预备单个根管提拉次数(预备效率)的影响。方法:按照根管冲洗液的不同,将100支机用镍钛锉(型号为ProTaper Universal F1)随机分为5组,每组20根,分别为A组:无菌蒸馏水组;B组:生理盐水组;C组:1%次氯酸钠组;D组:5%次氯酸钠组;E组:对照组。用PTU F1镍钛锉在模拟根管的树脂模块上行根管预备,预备过程中除对照组外其余四组分别采用四种不同的冲洗液持续冲洗锉针,记录并计算各组中预备单个根管的平均提拉次数及每支锉预备的根管数。运用单因素方差分析和最小显著差异法分析比较各组间的差异。结果:5组PTU F1锉折断前预备的根管数(个)和单个根管的平均提拉次数(次)分别为:A组:6.99±3.52和18.59±2.23;B组:6.25±1.72和17.81±0.80;C组:6.80±3.23和17.82±1.27次;D:4.04±2.31和20.35±2.66;E组:4.03±2.32和22.50±6.57。A、B、C三组的预备根管数和平均提拉次数与D组、E组均有统计学差异(P<0.05),D组与E组平均提拉次数有统计学差异(P<0.05)。结论:与对照组相比,蒸馏水、生理盐水、1%次氯酸钠均可显著增加镍钛锉的预备根管数,提高预备效率;5%次氯酸钠可提高镍钛锉的预备效率,但对锉针预备根管数无明显影响。 展开更多
关键词 管预备 机用镍钛锉 冲洗液 根管数 预备效率
下载PDF
X线成像法与三维成像法观察磨牙根部根管数目的比较 被引量:1
2
作者 傅翔 陈文霞 《上海口腔医学》 CAS CSCD 2010年第1期91-94,共4页
目的:使用硬组织切片机和常用的三维成像软件,对磨牙根部牙体组织进行三维重建,建立一种观察牙体内部结构、形态的方法,并比较牙体的X线成像与三维成像观察到的根管数目。方法:取12颗因牙周病拔出的成人离体磨牙,拔出前拍摄体内X线片。... 目的:使用硬组织切片机和常用的三维成像软件,对磨牙根部牙体组织进行三维重建,建立一种观察牙体内部结构、形态的方法,并比较牙体的X线成像与三维成像观察到的根管数目。方法:取12颗因牙周病拔出的成人离体磨牙,拔出前拍摄体内X线片。运用硬组织切片机,将样本从根尖末端至根分叉进行连续切片,通过体视显微镜放大每个牙根横切面后,数码相机摄片,所得照片经过3dsmax软件重建,得出可以从任何角度观察牙体形态和结构的三维图像。结果:利用硬组织切片机和三维软件3dsmax能重建牙体的形态与结构,X线成像可观察到的根管总数为19个,远远少于在三维成像中观察到的根管总数(47个)。结论:使用硬组织切片机和三维软件3dsmax,可建立起一种实验室牙体三维重建的方法。 展开更多
关键词 磨牙 三维重建 X线成像 根管数
下载PDF
Solving the Sod Shock Tube Problem Using Localized Differential Quadrature (LDQ) Method
3
作者 宗智 李章锐 董婧 《Journal of Marine Science and Application》 2011年第1期41-48,共8页
The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as di... The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as difference method) to numerically evaluate the derivatives of the functions.Its high efficiency and accuracy attract many engineers to apply the method to solve most of the numerical problems in engineering.However,difficulties can still be found in some particular problems.In the following study,the LDQ was applied to solve the Sod shock tube problem.This problem is a very particular kind of problem,which challenges many common numerical methods.Three different examples were given for testing the robustness and accuracy of the LDQ.In the first example,in which common initial conditions and solving methods were given,the numerical oscillations could be found dramatically;in the second example,the initial conditions were adjusted appropriately and the numerical oscillations were less dramatic than that in the first example;in the third example,the momentum equation of the Sod shock tube problem was corrected by adding artificial viscosity,causing the numerical oscillations to nearly disappear in the process of calculation.The numerical results presented demonstrate the detailed difficulties encountered in the calculations,which need to be improved in future work.However,in summary,the localized differential quadrature is shown to be a trustworthy method for solving most of the nonlinear problems in engineering. 展开更多
关键词 localized differential quadrature Sod shock tube numerical oscillations artificial viscosity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部