The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 ...The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.展开更多
The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir...The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir relations with phosphate uptake by plant as well as transpiration rate (atmosphere humidity). It wasfound that although the phosphate in the soilroot interface zone was of depletive distribution as a functionC/Co = ax ̄b(C/Co is the relative content of fertilizer phosphate in a distance from the root surface x, aand b are the regression constants), and a relative accumulation zone of phosphate within 0.5 mm near theroot surface was often observed especially in the heavier texture soils because of root phosphate secretion.The depletion intensity of phosphate in the soil-root interface zone was in agreement with the phosphateuptake by plants under two humidities very well. However, the effects of air humidity on characteristics ofthe phosphate distribution near wheat or maize root surface were different. Wheat grew better under loweratmosphere humidity while maize, under higher humidity, which caused a more intensive uptake and thusa stronger depletion of phosphate in the rhizosphere. Moreover, the depletion intensity was greater by thebottom or the middle part of wheat roots and by the top or the middle part of maize roots. The depletivedistribution of phosphate in the rhizosphere soil and the relative contribution of phosphate diffusion to plant,which was more than 98% in the cultural experiments, indicated that diffusion was a major process forphosphorus supply to plants.展开更多
基金Supported by the Key Technology Program of the Xinjiang Uygur Autonomous Region, China (No.200733144-1)the Knowledge Innovation Project of the Chinese of Academy of Sciences (No.KSCX2-YW-N-41)
文摘The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.
文摘The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir relations with phosphate uptake by plant as well as transpiration rate (atmosphere humidity). It wasfound that although the phosphate in the soilroot interface zone was of depletive distribution as a functionC/Co = ax ̄b(C/Co is the relative content of fertilizer phosphate in a distance from the root surface x, aand b are the regression constants), and a relative accumulation zone of phosphate within 0.5 mm near theroot surface was often observed especially in the heavier texture soils because of root phosphate secretion.The depletion intensity of phosphate in the soil-root interface zone was in agreement with the phosphateuptake by plants under two humidities very well. However, the effects of air humidity on characteristics ofthe phosphate distribution near wheat or maize root surface were different. Wheat grew better under loweratmosphere humidity while maize, under higher humidity, which caused a more intensive uptake and thusa stronger depletion of phosphate in the rhizosphere. Moreover, the depletion intensity was greater by thebottom or the middle part of wheat roots and by the top or the middle part of maize roots. The depletivedistribution of phosphate in the rhizosphere soil and the relative contribution of phosphate diffusion to plant,which was more than 98% in the cultural experiments, indicated that diffusion was a major process forphosphorus supply to plants.