Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunna...Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunnan Province of China. [Method] The pathogenic fungi were isolated and purified by using potato dextrose agar (PDA) medium. The morphological identification was accomplished first according to the colony forms of the fungi when cultivated in vitro, then accord-ing to the symptom characteristics and colony forms of the re-isolated fungi in the reverse inoculation experiments. The molecular identification was performed accord-ing to the amplification and alignment of the internal transcribed space (ITS) se-quences of the fungi. The increases of the diameters and thickness of the colonies of the fungi cultivated in vitro were employed to indicate the growth rates of the fungi. [Results] The consistency of the colony forms and symptom characteristics and the 96%-99% similarities revealed in the ITS sequence alignments al proved that the main pathogenic fungi of the root rot, black spot and round spot of the P. notoginseng plants raised in Wenshan were Cylindrocarpon didymium, Alternaria panax and Mycocentrospora acerina, respectively. When cultivated in vitro in the same temperature, humidity and il umination, the increases of the colony diameters and thickness of C. didymium were the highest, fol owed by those of A. panax, then those of M. acerina. During different cultivation periods, the differences of the colony diameters and thickness of the three fungi al reached extremely significant level. However, at the same cultivation time, the differences of the diameters and thickness among the three fungi only reached significant level. [Conclusion] The main pathogenic fungi which result in the root rot, black spot and round spot of the P. notoginseng in Wenshan are C. didymium, A. panax and M. acerina, respec-tively. When these three diseases break out at the same time, the root rot wil spread fastest, fol owed orderly by the black spot and the round spot.展开更多
In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen...In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen Phytophthora infestans; howev- er, the role that the Cdcl4 homolog (PsCdcl4) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in spornlation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) medi- ates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transfor- marion system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdcl4 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.展开更多
基金Supported by the National Natural Science Foundation of China(31060045,31260091,31460065)~~
文摘Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunnan Province of China. [Method] The pathogenic fungi were isolated and purified by using potato dextrose agar (PDA) medium. The morphological identification was accomplished first according to the colony forms of the fungi when cultivated in vitro, then accord-ing to the symptom characteristics and colony forms of the re-isolated fungi in the reverse inoculation experiments. The molecular identification was performed accord-ing to the amplification and alignment of the internal transcribed space (ITS) se-quences of the fungi. The increases of the diameters and thickness of the colonies of the fungi cultivated in vitro were employed to indicate the growth rates of the fungi. [Results] The consistency of the colony forms and symptom characteristics and the 96%-99% similarities revealed in the ITS sequence alignments al proved that the main pathogenic fungi of the root rot, black spot and round spot of the P. notoginseng plants raised in Wenshan were Cylindrocarpon didymium, Alternaria panax and Mycocentrospora acerina, respectively. When cultivated in vitro in the same temperature, humidity and il umination, the increases of the colony diameters and thickness of C. didymium were the highest, fol owed by those of A. panax, then those of M. acerina. During different cultivation periods, the differences of the colony diameters and thickness of the three fungi al reached extremely significant level. However, at the same cultivation time, the differences of the diameters and thickness among the three fungi only reached significant level. [Conclusion] The main pathogenic fungi which result in the root rot, black spot and round spot of the P. notoginseng in Wenshan are C. didymium, A. panax and M. acerina, respec-tively. When these three diseases break out at the same time, the root rot wil spread fastest, fol owed orderly by the black spot and the round spot.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest (Grant No. 3-20) from the Chinese governmentthe Priority Academic Program Development for Jiangsu Higher Education Institutions
文摘In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen Phytophthora infestans; howev- er, the role that the Cdcl4 homolog (PsCdcl4) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in spornlation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) medi- ates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transfor- marion system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdcl4 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.