In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential...In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential Finsler metric F is locally projectively flat if and only if α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of expo-nential Finsler metric F vanishes if and only if β is parallel with respect to α. And from this fact, we get that if exponential Finsler metric F is the Douglas metric, then F is not only a Berwald metric, but also a Landsberg metric.展开更多
基金Project (No. 10571154) supported by the National Natural ScienceFoundation of China
文摘In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential Finsler metric F is locally projectively flat if and only if α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of expo-nential Finsler metric F vanishes if and only if β is parallel with respect to α. And from this fact, we get that if exponential Finsler metric F is the Douglas metric, then F is not only a Berwald metric, but also a Landsberg metric.