The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigate...The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.展开更多
In this paper we define pure-supernilpotent radical and show that the class of all pureaupernilpotent radicals forms a complete lattice. We discuss some open questions on lattices of supernilpotent and special radica...In this paper we define pure-supernilpotent radical and show that the class of all pureaupernilpotent radicals forms a complete lattice. We discuss some open questions on lattices of supernilpotent and special radicals [5, 6] and obtain some new results.展开更多
We study superfluidity of paired Bosonic atoms in optical lattices. The atoms have strong repulsive on-slte energy. Single atom tunneling is severely suppressed while the atom-pair may co-tunnel by the second order qu...We study superfluidity of paired Bosonic atoms in optical lattices. The atoms have strong repulsive on-slte energy. Single atom tunneling is severely suppressed while the atom-pair may co-tunnel by the second order quantum transition, which induces paired superfluidity as repulsive nearest-neighbor interactions are included. The mean-field phase diagram and low energy excitations are explored for a square lattice system.展开更多
CeO2,Ce1–xZrxO2,and Ce1–xYxO2–δ(x=0.25,0.50,0.75,and 1.00)have been rapidly synthesized to estimate their catalytic behavior in decomposing CH3SH.The role of oxygen vacancies,and the relationship between the oxyge...CeO2,Ce1–xZrxO2,and Ce1–xYxO2–δ(x=0.25,0.50,0.75,and 1.00)have been rapidly synthesized to estimate their catalytic behavior in decomposing CH3SH.The role of oxygen vacancies,and the relationship between the oxygen species and catalytic properties of CeO2 and Zr‐doped and Y‐doped ceria‐based materials are investigated in detail.Combining the observed catalytic performance with the characterization results,it can be deemed that surface lattice oxygen plays a critical role in methanethiol catalytic conversion over cerium oxides.Ce0.75Zr0.25O2 shows higher catalytic activity for CH3SH decomposition due to the large amount of surface lattice oxygen,readily available oxygen species,and excellent redox properties.Ce0.75Y0.25O2–δdisplays better catalytic stability owing to the greater number of oxygen vacancies that would promote bulk lattice oxygen migration to the surface of the catalyst in order to replenish surface lattice oxygen.In addition,the results show that the difference in chemical valence between Ce and the heteroatoms would strongly influence the amount of surface lattice oxygen as well as the mobility of bulk‐phase oxygen in these catalysts,thus affecting their activity and stability.展开更多
The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the i...The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.展开更多
By analogy with the bosonic bipartite entangled state we construct fermionic entangled state with the Grassmann numbers. The Wigner operator in the fermionic entangled state representation is introduced, whose margina...By analogy with the bosonic bipartite entangled state we construct fermionic entangled state with the Grassmann numbers. The Wigner operator in the fermionic entangled state representation is introduced, whose marginal distributions are understood in an entangled way. The technique of integration within an ordered product (IWOP) of Fermi operators is used in our discussion.展开更多
We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector...We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.展开更多
In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l ...In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices I and l+ 1, and I and l - 1. In this case the fluctuations are a constant, and the magnetic soliton appears.展开更多
The effective action for spin-1 bosonic atom in an optical lattice is derived. The quasiparticle and quasihole dispersions are calculated for different cases by using a functional integral formalism. For all cases, th...The effective action for spin-1 bosonic atom in an optical lattice is derived. The quasiparticle and quasihole dispersions are calculated for different cases by using a functional integral formalism. For all cases, the excitation spectra are analyzed. All the quasiparticle and quasihole excitations start with a gap.展开更多
A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavi...A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavity filled with a strong coherent field sequentially. Then state-selective measurements are performed on the atoms. The detections of the atoms in ground states collapse the cavity field onto a superposition of 2(n) coherent states. This is the first way for producing superpositions of many coherent states through resonant atom-field interaction.展开更多
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.
文摘In this paper we define pure-supernilpotent radical and show that the class of all pureaupernilpotent radicals forms a complete lattice. We discuss some open questions on lattices of supernilpotent and special radicals [5, 6] and obtain some new results.
基金Supported by National Natural Science Foundation of China under Grant No.10874018by the 973 Program Project under Grant No.2009CB929101
文摘We study superfluidity of paired Bosonic atoms in optical lattices. The atoms have strong repulsive on-slte energy. Single atom tunneling is severely suppressed while the atom-pair may co-tunnel by the second order quantum transition, which induces paired superfluidity as repulsive nearest-neighbor interactions are included. The mean-field phase diagram and low energy excitations are explored for a square lattice system.
基金supported by the National Natural Science Foundation of China (21667016, 21267011, U1402233)~~
文摘CeO2,Ce1–xZrxO2,and Ce1–xYxO2–δ(x=0.25,0.50,0.75,and 1.00)have been rapidly synthesized to estimate their catalytic behavior in decomposing CH3SH.The role of oxygen vacancies,and the relationship between the oxygen species and catalytic properties of CeO2 and Zr‐doped and Y‐doped ceria‐based materials are investigated in detail.Combining the observed catalytic performance with the characterization results,it can be deemed that surface lattice oxygen plays a critical role in methanethiol catalytic conversion over cerium oxides.Ce0.75Zr0.25O2 shows higher catalytic activity for CH3SH decomposition due to the large amount of surface lattice oxygen,readily available oxygen species,and excellent redox properties.Ce0.75Y0.25O2–δdisplays better catalytic stability owing to the greater number of oxygen vacancies that would promote bulk lattice oxygen migration to the surface of the catalyst in order to replenish surface lattice oxygen.In addition,the results show that the difference in chemical valence between Ce and the heteroatoms would strongly influence the amount of surface lattice oxygen as well as the mobility of bulk‐phase oxygen in these catalysts,thus affecting their activity and stability.
基金Project(50671084) supported by the National Natural Science Foundation of ChinaProject(2009021028) supported by Science and Technique Foundation for Young Scholars of Shanxi Province, ChinaProject(20100470125) supported by National Science Foundation for Post-doctoral Scientists of China
文摘The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475056 and 10574060
文摘By analogy with the bosonic bipartite entangled state we construct fermionic entangled state with the Grassmann numbers. The Wigner operator in the fermionic entangled state representation is introduced, whose marginal distributions are understood in an entangled way. The technique of integration within an ordered product (IWOP) of Fermi operators is used in our discussion.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.
文摘In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices I and l+ 1, and I and l - 1. In this case the fluctuations are a constant, and the magnetic soliton appears.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10547107, 10447125, and Doctoral Starting Fund from Southeast University under Grant No. 9207022244
文摘The effective action for spin-1 bosonic atom in an optical lattice is derived. The quasiparticle and quasihole dispersions are calculated for different cases by using a functional integral formalism. For all cases, the excitation spectra are analyzed. All the quasiparticle and quasihole excitations start with a gap.
基金The project supported by Fok Ying Tung Education Foundation under Grant No. 81008, National Natural Science Foundation of China under Grant Nos. 60008003 and 10225421, and Funds from Fuzhou University
文摘A simple method is presented for generating multicomponent Schrodinger cat states through resonant atom-field interactions. In the scheme n two-level atoms, initially in ground states, are sent through a resonant cavity filled with a strong coherent field sequentially. Then state-selective measurements are performed on the atoms. The detections of the atoms in ground states collapse the cavity field onto a superposition of 2(n) coherent states. This is the first way for producing superpositions of many coherent states through resonant atom-field interaction.