The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, an...The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.展开更多
基金ACKNOWLEDGMENTS This work was supported by the Doctoral Discipline Foundation of the Ministry of Education of China (No.20070533118) and the National Natural Science Foundation of China (No.50871124). The authors acknowledge Dr. Y. Z. Nie for his useful discussion in calculations.
文摘The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.