The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)...The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.展开更多
The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows whe...The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.展开更多
Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the propose...Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the proposed drive-response system, which consists of two coupled OGLEs, is investigated and controlled by a state error feedback controller with the lattice Boltzmann method. First, spiral wave appropriate parameters of the response system under the no-flux and turbulence are, respectively, generated by selecting boundary and perpendicular gradient initial conditions. Then, based on the random initial condition, the target wave yielded by introducing spatially localized inhomogeneity into the drive system is applied on the above response system. The numerical simulation results show that the spiral wave and turbulence existing in the response system could be successfully eliminated by the target wave in the drive system during a short evolution time. Furthermore, it turns out that the transient time for the drive course is related to the control intensity imposed on the whole media.展开更多
基金Supported by the Aeronautical Science Foundation of China(20111453012)the National Defense Pre-Research Foundation of China(9140A13040111HK0329)~~
文摘The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.
基金supported by the Virginia Institute of Marine Science,College of William and Mary for the Study Environmentthe National Natural Science Foundation of China(Grant No.50679008)
文摘The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.
基金Supported by the National Natural Science Foundations of China under Grant Nos.61202051,11272132the Special Fund for Basic Scientific Research of Central CollegesChina University of Geosciences Wuhan under Grant Nos.CUG110828 and CUG130416
文摘Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the proposed drive-response system, which consists of two coupled OGLEs, is investigated and controlled by a state error feedback controller with the lattice Boltzmann method. First, spiral wave appropriate parameters of the response system under the no-flux and turbulence are, respectively, generated by selecting boundary and perpendicular gradient initial conditions. Then, based on the random initial condition, the target wave yielded by introducing spatially localized inhomogeneity into the drive system is applied on the above response system. The numerical simulation results show that the spiral wave and turbulence existing in the response system could be successfully eliminated by the target wave in the drive system during a short evolution time. Furthermore, it turns out that the transient time for the drive course is related to the control intensity imposed on the whole media.