多孔材料作为一种新型材料,因其轻质、高导热等特性应用于多个领域。对于多孔材料进行数值重构,并研究其传热特性对工程应用具有重要意义。本文根据多孔材料内部的复杂结构进行建模,应用格子玻尔兹曼方法计算多孔材料的等效导热系数,进...多孔材料作为一种新型材料,因其轻质、高导热等特性应用于多个领域。对于多孔材料进行数值重构,并研究其传热特性对工程应用具有重要意义。本文根据多孔材料内部的复杂结构进行建模,应用格子玻尔兹曼方法计算多孔材料的等效导热系数,进行算法验证,并分析网格数目和两相导热系数比对等效导热系数计算结果的影响。其中,等效导热系数模拟结果会在一定网格区间内趋于准确,并且两相导热系数比越大,等效导热系数变化越平稳,趋于定值。As a new kind of material, porous material is applied in many fields because of its light weight and high thermal conductivity. The numerical reconstruction of porous materials and the study of their heat transfer characteristics are of great significance for engineering applications. In this paper, the complex structure of porous material is modeled, and the lattice Ludwig Boltzmann method is used to calculate the effective thermal conductivity of porous material, validate the algorithm, and analyze the influence of mesh number and two-phase thermal conductivity ratio on the calculation results of equivalent thermal conductivity. The simulation results of equivalent thermal conductivity tend to be accurate in a certain grid range, and the higher the two-phase thermal conductivity ratio, the more stable the change of equivalent thermal conductivity, tending to a fixed value.展开更多
文摘多孔材料作为一种新型材料,因其轻质、高导热等特性应用于多个领域。对于多孔材料进行数值重构,并研究其传热特性对工程应用具有重要意义。本文根据多孔材料内部的复杂结构进行建模,应用格子玻尔兹曼方法计算多孔材料的等效导热系数,进行算法验证,并分析网格数目和两相导热系数比对等效导热系数计算结果的影响。其中,等效导热系数模拟结果会在一定网格区间内趋于准确,并且两相导热系数比越大,等效导热系数变化越平稳,趋于定值。As a new kind of material, porous material is applied in many fields because of its light weight and high thermal conductivity. The numerical reconstruction of porous materials and the study of their heat transfer characteristics are of great significance for engineering applications. In this paper, the complex structure of porous material is modeled, and the lattice Ludwig Boltzmann method is used to calculate the effective thermal conductivity of porous material, validate the algorithm, and analyze the influence of mesh number and two-phase thermal conductivity ratio on the calculation results of equivalent thermal conductivity. The simulation results of equivalent thermal conductivity tend to be accurate in a certain grid range, and the higher the two-phase thermal conductivity ratio, the more stable the change of equivalent thermal conductivity, tending to a fixed value.