期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态图像融合的DCCNN识别电能质量扰动
1
作者 余雷 刘宏伟 孟芸 《现代电子技术》 北大核心 2024年第3期137-142,共6页
为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值... 为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值递归图分别将电能质量扰动时序数据进行模态变换;其次,对转换生成的三类图像各提取出一个单通道灰度图进行融合;最后,将融合得到的特征图输入到双通道卷积神经网络中进行扰动识别。实验表明:多模态融合得到的特征图扰动特征保留更多,而且双通道卷积神经网络提取特征能力强,具有一定的抗噪鲁棒性,扰动识别准确率高。 展开更多
关键词 电能质量扰动 格拉姆求和场 马尔可夫转移 无阈值递归图 双通道卷积神经网络 识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部