An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (...An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.展开更多
This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based...This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based on the distribution of features in raw data. Modeling analysis proves that distortion caused by gridding can be greatly reduced when using such parameters. We also present some improved technical measures that use human- machine interaction and multi-thread parallel technology to solve inadequacies in traditional gridding software. On the basis of these methods, we have developed software that can be used to grid scattered data using a graphic interface. Finally, a comparison of different gridding parameters on field magnetic data from Ji Lin Province, North China demonstrates the superiority of the proposed method in eliminating the distortions and enhancing gridding efficiency.展开更多
The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square ...The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square lattices are obtained by Petviashvili iteration method. It is found that for both the kinds of lattices, two in-phase (out- of-phase) discrete-soliton trains attract (repel) each other, and the intermediates are always accompanied with energy transfer. While the interaction forces between two incoherent discrete-soliton trains are always attractive.展开更多
An integrable (2+1)-dimensional Toda lattice with two discrete variables is investigated again, which is produced from a compatible condition of the Lax triad. The Darboux transformation for its spectral problems i...An integrable (2+1)-dimensional Toda lattice with two discrete variables is investigated again, which is produced from a compatible condition of the Lax triad. The Darboux transformation for its spectral problems is found. As an application, explicit solutions of the (2+1)-dimensional Toda equation with two discrete variables are obtained.展开更多
This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promi...This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.展开更多
The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the...The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the weakness factor has the same significance as the damage factor. We simulate the wave field using a staggered-grid pseudospectral method to show the influence of the weakness factor qualitatively. Applying the analytical solution of plane waves, we give the velocity and attenuation coefficient of three body waves, which are affected by the wave frequency and the weakness factor of saturated discrete media. Our results show that velocity decreases with increasing weakness factor, the attenuation coefficient increases with an increase in the weakness factor, and that the influence of weakness depends on the mode of the body waves.展开更多
A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorth...A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorthogonal diffusion items generated by the scheme in discrete equations is provided.The Delaunay triangulation method is improved to generate the unstructured grid.The computing program based on the SIMPLE algorithm in an unstructured grid is compiled and used to solve the discrete equations of two types of incompressible viscous flow.The numerical simulation results of the laminar flow driven by lid in cavity and flow behind a cylinder are compared with the theoretical solution and experimental data respectively.In the former case,a good agreement is achieved in the main velocity and drag coefficient curve.In the latter case,the numerical structure and development of vortex under several Reynolds numbers match well with that of the experiment.It is indicated that the factor difference scheme is of higher accuracy,and feasible to be applied to Navier-Stokes equation.展开更多
This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equat...This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.展开更多
This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrica...This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrical FD as the grid size gradually becomes more extensive with the increasing radius.To prevent grids from being too coarse in far fields,we compensate for the grid cell infl ation by refi ning the grid step in the azimuthal direction.The variable grid FD in the cylindrical coordinate systems has a higher effi ciency in solving acoustic logging while drilling(LWD)problems because the grid boundaries are consistent with those of the drill collar and the borehole.The proposed algorithm saves approximately 94%of the FD grids,80%of the computation time,and memory with a higher calculation accuracy than the FD on rectangular grids for the same models.We also calculate the acoustic LWD responses of the fl uid-fi lled borehole intersecting with fractures.Refl ections are generated at the fractures,which can be equivalent to an additional scattering source.The mode conversions between the collar and the Stoneley waves are revealed.The Stoneley spectra are more sensitive to the fracture.Finally,the logs in a heterogeneous formation with two refl ectors far from the borehole are modeled,and a means of estimating the azimuth of geological interfaces from refl ections is proposed.展开更多
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co...In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.展开更多
A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr...A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.展开更多
We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presence...We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presenceof the effective magnetic field,the energy spectrum of the unconventional Landau levels is calculated.Furthermore,wepropose to detect the unconventional Landau levels with Bragg scattering techniques.展开更多
In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG...In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG, is used to simulate the current distribution in order to compute the scattering properties of arbitrary shape microstrip patch without the staircase approximation. The numerical result shows the validity of the proposed method.展开更多
We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector...We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.展开更多
We propose a silica-core dispersion-decreasing Bragg fiber (DDBF) of mode effective area as large as 55 μm^2 for supercontinuum (SO) generation at the pump wavelength of 1060 nm. Using a fast and simple matrix me...We propose a silica-core dispersion-decreasing Bragg fiber (DDBF) of mode effective area as large as 55 μm^2 for supercontinuum (SO) generation at the pump wavelength of 1060 nm. Using a fast and simple matrix method to model propagation in the DDBF,we have presented a general criterion to obtain the shortest length of the DDBF that would result in a broad SO spectrum. The proposed DDBF design should be amenable for reproducible fabrication through the well-developed MCVD fiber manufacturing technology and the concept has potential for realization as a practical device.展开更多
文摘An upwind scheme based on the unstructured mesh is developed to solve ideal 2-D magnetohydrodynamics (MHD) equations. The inviscid fluxes are approximated by using the modified advection upstream splitting method (AUSM) scheme, and a 5-stage explicit Runge-Kutta scheme is adopted in the time integration. To avoid the influence of the magnetic field divergence created during the simulation, the hyperbolic divergence cleaning method is introduced. The shock-capturing properties of the method are verified by solving the MHD shock-tube problem. Then the 2-D nozzle flow with the magnetic field is numerically simulated on the unstructured mesh. Computational results demonstrate the effects of the magnetic field and agree well with those from references.
基金partly supported by the Public Geological Survey Project(No.201011039)the National High Technology Research and Development Project of China(No.2007AA06Z134)the 111 Project under the Ministry of Education and the State Administration of Foreign Experts Affairs,China(No.B07011)
文摘This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based on the distribution of features in raw data. Modeling analysis proves that distortion caused by gridding can be greatly reduced when using such parameters. We also present some improved technical measures that use human- machine interaction and multi-thread parallel technology to solve inadequacies in traditional gridding software. On the basis of these methods, we have developed software that can be used to grid scattered data using a graphic interface. Finally, a comparison of different gridding parameters on field magnetic data from Ji Lin Province, North China demonstrates the superiority of the proposed method in eliminating the distortions and enhancing gridding efficiency.
文摘The coherent and incoherent interactions between discrete-soliton trains are numerically investigated in lightinduced two-dimensional photonic lattices. The solutions of discrete-soliton trains for diamond and square lattices are obtained by Petviashvili iteration method. It is found that for both the kinds of lattices, two in-phase (out- of-phase) discrete-soliton trains attract (repel) each other, and the intermediates are always accompanied with energy transfer. While the interaction forces between two incoherent discrete-soliton trains are always attractive.
基金The project supported by the Special Funds for Major State Basic Research Project under Grant No. G2000077301
文摘An integrable (2+1)-dimensional Toda lattice with two discrete variables is investigated again, which is produced from a compatible condition of the Lax triad. The Darboux transformation for its spectral problems is found. As an application, explicit solutions of the (2+1)-dimensional Toda equation with two discrete variables are obtained.
文摘This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.
基金0ur work is supported by the 0pen Fund of the CNPC Key Lab of Geophysical Exploration (GPKL0202), the 0pen Fund of the State Key Laboratory of 0il and Gas Reservoir Geology and Exploitation (PLC200304), and the Natural Science Foundation of Hubei Province (2002AB018).
文摘The elasticity, viscosity, and the relationships derived from rheology weakness properties are taken into account in mechanics. Comparing with the corresponding relationships derived from damage mechanics, we find the weakness factor has the same significance as the damage factor. We simulate the wave field using a staggered-grid pseudospectral method to show the influence of the weakness factor qualitatively. Applying the analytical solution of plane waves, we give the velocity and attenuation coefficient of three body waves, which are affected by the wave frequency and the weakness factor of saturated discrete media. Our results show that velocity decreases with increasing weakness factor, the attenuation coefficient increases with an increase in the weakness factor, and that the influence of weakness depends on the mode of the body waves.
基金Supported by National Natural Science Foundation of China (No. 10632050)
文摘A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorthogonal diffusion items generated by the scheme in discrete equations is provided.The Delaunay triangulation method is improved to generate the unstructured grid.The computing program based on the SIMPLE algorithm in an unstructured grid is compiled and used to solve the discrete equations of two types of incompressible viscous flow.The numerical simulation results of the laminar flow driven by lid in cavity and flow behind a cylinder are compared with the theoretical solution and experimental data respectively.In the former case,a good agreement is achieved in the main velocity and drag coefficient curve.In the latter case,the numerical structure and development of vortex under several Reynolds numbers match well with that of the experiment.It is indicated that the factor difference scheme is of higher accuracy,and feasible to be applied to Navier-Stokes equation.
基金supported by PRIN-MIUR-Cofin 2006by University of Bologna"Funds for selected research topics"
文摘This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174421,11774373,11734017,and 42074215).
文摘This study proposes an elastic finite difference(FD)time domain method with variable grids in three-dimensional cylindrical coordinates.The calculations will diverge and become less accurate by conventional cylindrical FD as the grid size gradually becomes more extensive with the increasing radius.To prevent grids from being too coarse in far fields,we compensate for the grid cell infl ation by refi ning the grid step in the azimuthal direction.The variable grid FD in the cylindrical coordinate systems has a higher effi ciency in solving acoustic logging while drilling(LWD)problems because the grid boundaries are consistent with those of the drill collar and the borehole.The proposed algorithm saves approximately 94%of the FD grids,80%of the computation time,and memory with a higher calculation accuracy than the FD on rectangular grids for the same models.We also calculate the acoustic LWD responses of the fl uid-fi lled borehole intersecting with fractures.Refl ections are generated at the fractures,which can be equivalent to an additional scattering source.The mode conversions between the collar and the Stoneley waves are revealed.The Stoneley spectra are more sensitive to the fracture.Finally,the logs in a heterogeneous formation with two refl ectors far from the borehole are modeled,and a means of estimating the azimuth of geological interfaces from refl ections is proposed.
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
基金the National Key Basic Research Project of China under
文摘In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.
基金The project supported by the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China
文摘A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate the unconventional Landau levels of ultracold fermionic atoms on the two-dimensionalhoneycomb optical lattice subjected to an effective magnetic field,which is created with optical means.In the presenceof the effective magnetic field,the energy spectrum of the unconventional Landau levels is calculated.Furthermore,wepropose to detect the unconventional Landau levels with Bragg scattering techniques.
文摘In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG, is used to simulate the current distribution in order to compute the scattering properties of arbitrary shape microstrip patch without the staircase approximation. The numerical result shows the validity of the proposed method.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.
文摘We propose a silica-core dispersion-decreasing Bragg fiber (DDBF) of mode effective area as large as 55 μm^2 for supercontinuum (SO) generation at the pump wavelength of 1060 nm. Using a fast and simple matrix method to model propagation in the DDBF,we have presented a general criterion to obtain the shortest length of the DDBF that would result in a broad SO spectrum. The proposed DDBF design should be amenable for reproducible fabrication through the well-developed MCVD fiber manufacturing technology and the concept has potential for realization as a practical device.