In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been co...In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been compiled. In the single and double integral terms of Green function, the kernel function of wave resistance expression, special function expansion method and Chebyshev polynomials approach have been adopted respectively, which greatly simplify the calculation and increase the convergence speed.展开更多
The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow fo...The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green's function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green's functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large.展开更多
Seismic events are very complex spatial-temporal phenomena. Seismic catalogues, reporting information about spatial-temporal distribution of the main shocks, are nowadays available for many seismic areas in the world,...Seismic events are very complex spatial-temporal phenomena. Seismic catalogues, reporting information about spatial-temporal distribution of the main shocks, are nowadays available for many seismic areas in the world, very often major events mark the beginning of a series of earthquakes (aflershocks) whose frequency and energy are meanly decreasing in time down to the background level of activity. Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south, and Eurasian plate to the north. The cluster of earthquakes that struck near Varzeghan-Ahar was centered near the Gosha-Dagh fault, but preliminary data suggested that the fault was not responsible for the temblor. On the late afternoon of Saturday, August 11, 2012, the northwest of Iran was shaken by two of the strong earthquakes in Iranian history. First was hit by Mw (moment magnitude scale) = 6.4 Richter at local time 16:54 (12:23 GMT (Greenwich Mean Time)), and about 11 min later, an Mw = 6.3 struck 10 km to the west. The spatial-temporal clustering of micro earthquakes (aftershocks) near Varzeghan, is parameterized by means of a generalized passion model. The region has known faults but numerous smaller or deeply buried faults remain undated, according to the Geological Survey of Iran.展开更多
When one wants to calculate all the three components of magnetization of Heisenberg model under random phase approximation, at least one of the components should be the solution of an ordinary differential equation. I...When one wants to calculate all the three components of magnetization of Heisenberg model under random phase approximation, at least one of the components should be the solution of an ordinary differential equation. In this paper such an equation is established. It is argued that the general expressions of magnetization for any spin quantum number S suggested before are the solution of the ordinary differential equation.展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the impo...The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ 〉 0. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.展开更多
We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation sche...We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.展开更多
文摘In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been compiled. In the single and double integral terms of Green function, the kernel function of wave resistance expression, special function expansion method and Chebyshev polynomials approach have been adopted respectively, which greatly simplify the calculation and increase the convergence speed.
基金Project(51304220) supported by the National Natural Science Foundation of ChinaProject(3144033) supported by the Beijing Natural Science Foundation,ChinaProject(20130007120014) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green's function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green's functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large.
文摘Seismic events are very complex spatial-temporal phenomena. Seismic catalogues, reporting information about spatial-temporal distribution of the main shocks, are nowadays available for many seismic areas in the world, very often major events mark the beginning of a series of earthquakes (aflershocks) whose frequency and energy are meanly decreasing in time down to the background level of activity. Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south, and Eurasian plate to the north. The cluster of earthquakes that struck near Varzeghan-Ahar was centered near the Gosha-Dagh fault, but preliminary data suggested that the fault was not responsible for the temblor. On the late afternoon of Saturday, August 11, 2012, the northwest of Iran was shaken by two of the strong earthquakes in Iranian history. First was hit by Mw (moment magnitude scale) = 6.4 Richter at local time 16:54 (12:23 GMT (Greenwich Mean Time)), and about 11 min later, an Mw = 6.3 struck 10 km to the west. The spatial-temporal clustering of micro earthquakes (aftershocks) near Varzeghan, is parameterized by means of a generalized passion model. The region has known faults but numerous smaller or deeply buried faults remain undated, according to the Geological Survey of Iran.
基金the State Key Project of Fundamental Research of China under
文摘When one wants to calculate all the three components of magnetization of Heisenberg model under random phase approximation, at least one of the components should be the solution of an ordinary differential equation. In this paper such an equation is established. It is argued that the general expressions of magnetization for any spin quantum number S suggested before are the solution of the ordinary differential equation.
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.
文摘The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ 〉 0. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
文摘We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.