A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substra...A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.展开更多
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at vari...Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.展开更多
This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type se...This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.展开更多
The most relevant aspects related to the phase mask dithering/moving method for the fabrication of complex Bragg grating designs are reviewed. Details for experimental implementation of this technique is presented, in...The most relevant aspects related to the phase mask dithering/moving method for the fabrication of complex Bragg grating designs are reviewed. Details for experimental implementation of this technique is presented, including theoretical analysis of the calibration functions for the correct dither/displacement. Results from tailored Bragg grating structures fabricated by this method are shown. Apodized Bragg gratings with modeled spatial profiles were implemented, resulting in side mode suppression levels of more than 20 dB in gratings showing transmission filtering level higher than 30 dB. Chirped gratings with the spectral bandwidth up to 4 nm, π-shift and sampled Bragg gratings with equalized peaks equally spaced by 0.8 nm (100 GHz) were also fabricated.展开更多
The fiber Bragg grating (FBG) sensing technology was used to monitor the situation of a crevice of the continuous beam joint and rails near rail expansion devices on a viaduct of the urban railway. The monitoring it...The fiber Bragg grating (FBG) sensing technology was used to monitor the situation of a crevice of the continuous beam joint and rails near rail expansion devices on a viaduct of the urban railway. The monitoring items consisted of the rail temperature, rail displacement, viaduct beam displacement, and strain of sliding rail in the rail expansion device section. The strain sensor was a prefabricate FBG strain gauge, the displacement sensor with different scales used an FBG stress ring, and the FBG of the temperature sensor was pre-drawn and fixed in a metal tube. Compensation sensors were used to balance environmental temperature changes. All FBGs were suspended adhered, therefore the chirped phenomenon of the FBG reflection peak was avoided, and the measurement accuracy was improved. The monitoring results matched to the manual test and theoretical estimation.展开更多
基金Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of ChinaProject(2020JJ4247) supported by the Natural Science Foundation of Hunan Province,ChinaProject(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China。
文摘A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department,China(Grant No.16ZB0105)
文摘Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.
文摘This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.
文摘The most relevant aspects related to the phase mask dithering/moving method for the fabrication of complex Bragg grating designs are reviewed. Details for experimental implementation of this technique is presented, including theoretical analysis of the calibration functions for the correct dither/displacement. Results from tailored Bragg grating structures fabricated by this method are shown. Apodized Bragg gratings with modeled spatial profiles were implemented, resulting in side mode suppression levels of more than 20 dB in gratings showing transmission filtering level higher than 30 dB. Chirped gratings with the spectral bandwidth up to 4 nm, π-shift and sampled Bragg gratings with equalized peaks equally spaced by 0.8 nm (100 GHz) were also fabricated.
文摘The fiber Bragg grating (FBG) sensing technology was used to monitor the situation of a crevice of the continuous beam joint and rails near rail expansion devices on a viaduct of the urban railway. The monitoring items consisted of the rail temperature, rail displacement, viaduct beam displacement, and strain of sliding rail in the rail expansion device section. The strain sensor was a prefabricate FBG strain gauge, the displacement sensor with different scales used an FBG stress ring, and the FBG of the temperature sensor was pre-drawn and fixed in a metal tube. Compensation sensors were used to balance environmental temperature changes. All FBGs were suspended adhered, therefore the chirped phenomenon of the FBG reflection peak was avoided, and the measurement accuracy was improved. The monitoring results matched to the manual test and theoretical estimation.