The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to ...The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.展开更多
To reduce the difficulty of implementation and shorten the runtime of the traditional Kim-Fisher model, an entirely discrete Kim-Fisher-like model on lattices is proposed. The discrete model is directly built on the l...To reduce the difficulty of implementation and shorten the runtime of the traditional Kim-Fisher model, an entirely discrete Kim-Fisher-like model on lattices is proposed. The discrete model is directly built on the lattices, and the greedy algorithm is used in the implementation to continually decrease the energy function. First, regarding the gray values in images as discrete-valued random variables makes it possible to make a much simpler estimation of conditional entropy. Secondly, a uniform method within the level set framework for two-phase and multiphase segmentations without extension is presented. Finally, a more accurate approximation to the curve length on lattices with multi-labels is proposed. The experimental results show that, compared with the continuous Kim-Fisher model, the proposed model can obtain comparative results, while the implementation is much simpler and the runtime is dramatically reduced.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK2030000036)the National Natural Science Foundation of China(12075233).
文摘The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds.It has been shown that while the positivity part of the ultraviolet(UV)partial wave unitarity leads to the Wilson coefficients living in a convex cone,further including the nonpositivity part caps the cone from above.For Higgs scattering,a capped positivity cone was obtained using a simplified,linear unitarity condition without utilizing the full internal symmetries of Higgs scattering.Here,we further implement stronger nonlinear unitarity conditions from the UV,which generically gives rise to better bounds.We show that,for the Higgs case in particular,while the nonlinear unitarity conditions per se do not enhance the bounds,the fuller use of the internal symmetries do shrink the capped positivity cone significantly.
文摘To reduce the difficulty of implementation and shorten the runtime of the traditional Kim-Fisher model, an entirely discrete Kim-Fisher-like model on lattices is proposed. The discrete model is directly built on the lattices, and the greedy algorithm is used in the implementation to continually decrease the energy function. First, regarding the gray values in images as discrete-valued random variables makes it possible to make a much simpler estimation of conditional entropy. Secondly, a uniform method within the level set framework for two-phase and multiphase segmentations without extension is presented. Finally, a more accurate approximation to the curve length on lattices with multi-labels is proposed. The experimental results show that, compared with the continuous Kim-Fisher model, the proposed model can obtain comparative results, while the implementation is much simpler and the runtime is dramatically reduced.