Recent studies have demonstrated the importance of LUCC change with climate and ecosystem simulation, but the result could only be determined precisely if a high-resolution underlying land cover map is used. While the...Recent studies have demonstrated the importance of LUCC change with climate and ecosystem simulation, but the result could only be determined precisely if a high-resolution underlying land cover map is used. While the efforts based satellites have provided a good baseline for present land cover, what the next advancement in the research about LUCC change required is the development of reconstruction of historical LUCC change especially spatially-explicit historical dataset. Being different from other similar studies, this study is based on the analysis of historical land use patterns in the traditional cultivated region of China. Taking no account of the less important factors, altitude, slope and population patterns are selected as the major drivers of reclamation in ancient China, and used to design the HCGM (Historical Cropland Gridding Model, at a 60 km×60 km resolution), which is an empirical model for allocating the historical cropland inventory data spatially to grid cells in each political unit. Then we use this model to reconstruct cropland distribution of the study area in 1820, and verify the result by prefectural cropland data of 1820, which is from the historical documents. The statistical analyzing result shows that the model can simulate the patterns of the cropland distribution in the historical period in the traditional cultivated region efficiently.展开更多
In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Bas...In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.展开更多
Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-...Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible(ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties(angle and area)of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.展开更多
Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods ...Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods often fail to efficiently remove poor-quality elements especially in regions with sharp features. In this paper, we propose and use a robust segmentation method followed by remeshing the segmented mesh. Mesh segmentation is initiated using an existing Live-wire interaction approach and is further refined using local mesh operations. The refined segmented mesh is finally sent to the remeshing pipeline, in which each mesh segment is remeshed independently. An experimental study compares our mesh segmentation method as well as remeshing results with representative existing methods. We demonstrate that the proposed segmentation method is robust and suitable for remeshing.展开更多
Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods t...Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods that are time consuming owing to the need for frequent re-meshing,such as the finite element method and finite difference method,can hardly handle large deformation involving failure evolution in a multi-phase interaction environment.The objective of this research is to develop a quasi-meshless particle method based on the material point method for the model-based simulation of the hard–soft material interaction response.To demonstrate the proposed procedure,scenarios of a hard–soft material impact test are considered,where a force is applied to layers of materials and a hard bar with an initial velocity impacts a target with layers of different materials.The stress wave propagation and resulting failure evolution are simulated and compared with available data.Future research tasks are then discussed on the basis of the preliminary results.展开更多
基金Natiional Natural Science Foundation of China,No.40471007Innovation Knowledge Project of CAS,No.KZCX2-YW-315
文摘Recent studies have demonstrated the importance of LUCC change with climate and ecosystem simulation, but the result could only be determined precisely if a high-resolution underlying land cover map is used. While the efforts based satellites have provided a good baseline for present land cover, what the next advancement in the research about LUCC change required is the development of reconstruction of historical LUCC change especially spatially-explicit historical dataset. Being different from other similar studies, this study is based on the analysis of historical land use patterns in the traditional cultivated region of China. Taking no account of the less important factors, altitude, slope and population patterns are selected as the major drivers of reclamation in ancient China, and used to design the HCGM (Historical Cropland Gridding Model, at a 60 km×60 km resolution), which is an empirical model for allocating the historical cropland inventory data spatially to grid cells in each political unit. Then we use this model to reconstruct cropland distribution of the study area in 1820, and verify the result by prefectural cropland data of 1820, which is from the historical documents. The statistical analyzing result shows that the model can simulate the patterns of the cropland distribution in the historical period in the traditional cultivated region efficiently.
基金Projects(U1334205,51205418)supported by the National Natural Science Foundation of ChinaProject(2014T002-A)supported by the Science and Technology Research Program of China Railway CorporationProject(132014)supported by the Fok Ying Tong Education Foundation of China
文摘In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.
基金supported by the National Natural Science Foundation of China(Nos.61432003,61572105,11171052,and 61328206)
文摘Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible(ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties(angle and area)of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
基金the National Natural Science Foundation of China(Nos.61772523,61372168,61620106003,and 61331018)supported by a Chinese Government Scholarship
文摘Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods often fail to efficiently remove poor-quality elements especially in regions with sharp features. In this paper, we propose and use a robust segmentation method followed by remeshing the segmented mesh. Mesh segmentation is initiated using an existing Live-wire interaction approach and is further refined using local mesh operations. The refined segmented mesh is finally sent to the remeshing pipeline, in which each mesh segment is remeshed independently. An experimental study compares our mesh segmentation method as well as remeshing results with representative existing methods. We demonstrate that the proposed segmentation method is robust and suitable for remeshing.
基金The National Natural Science Foundation of China(Grant Nos.51476150,11102185 and 11232003)U.S.Defense Threat Reduction Agency(Grant No.HDTRA1-10-1-0022)+1 种基金International Joint Research Program of Shanxi Province,China(Grant No.2014081028)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
文摘Understanding the mechanisms of hard–soft material interaction under impact loading is important not only in the defense industry but also in daily life.However,traditional mesh-based spatial discretization methods that are time consuming owing to the need for frequent re-meshing,such as the finite element method and finite difference method,can hardly handle large deformation involving failure evolution in a multi-phase interaction environment.The objective of this research is to develop a quasi-meshless particle method based on the material point method for the model-based simulation of the hard–soft material interaction response.To demonstrate the proposed procedure,scenarios of a hard–soft material impact test are considered,where a force is applied to layers of materials and a hard bar with an initial velocity impacts a target with layers of different materials.The stress wave propagation and resulting failure evolution are simulated and compared with available data.Future research tasks are then discussed on the basis of the preliminary results.