期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Risk assessment of rockburst using SMOTE oversampling and integration algorithms under GBDT framework
1
作者 WANG Jia-chuang DONG Long-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2891-2915,共25页
Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall... Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management. 展开更多
关键词 rockburst evaluation SMOTE oversampling random search grid K-fold cross-validation confusion matrix
下载PDF
2015年中国1:10万土地覆被数据河南地区精度评价 被引量:10
2
作者 朱筠 孙九林 +1 位作者 秦奋 王航 《中国土地科学》 CSSCI CSCD 北大核心 2019年第3期59-67,共9页
研究目的:针对国内首套2015年中国1∶10万土地覆被数据产品,以河南省为研究区进行精度评价。研究方法:采用实地考察与格网抽样融合的样本设计方法,共采集区域全覆盖样本1894个,其中,实地样本271个,正六边形格网样本1623个;通过混淆矩阵... 研究目的:针对国内首套2015年中国1∶10万土地覆被数据产品,以河南省为研究区进行精度评价。研究方法:采用实地考察与格网抽样融合的样本设计方法,共采集区域全覆盖样本1894个,其中,实地样本271个,正六边形格网样本1623个;通过混淆矩阵精度评价方法,评价数据产品精度,分析影响土地覆被分类精度的原因。研究结果:耕地、建设用地、水体、林地一级地类制图精度都在90%以上,草地和其它制图精度分别为84.68%和85.7%;20个二级地类的总体精度91.34%,其中,旱地、城镇建设用地、农村居民地、交通用地、河流、水库/坑塘、裸岩二级地类精度在90%以上,除常绿阔叶林、灌丛、灌丛草地、草甸、河湖滩地、裸地几个地类分类精度较低,其余地类精度均在80%以上。研究结论:该数据产品在河南地区具有较高的精度,可为气候、水文、生态等相关科研领域提供基础数据。 展开更多
关键词 土地评价 土地覆被 实地采样 格网采样 精度评价 混淆矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部