Temperature thresholds during the rice (Oryza sativa L.) cycle development have been reported to affect plant metabolism Therefore, this study aimed to evaluate the effects of the above-optimal temperature on photos...Temperature thresholds during the rice (Oryza sativa L.) cycle development have been reported to affect plant metabolism Therefore, this study aimed to evaluate the effects of the above-optimal temperature on photosynthetic and morphometric parameters in two contrasting irrigated rice genotypes (BRS Quer^ncia--sensitive and Nagina 22 (N22)~tolerant). Plants of both genotypes were grown in rhizotrons and always maintained under two temperature conditions: Out--under environmental temperature conditions, and In--rhizotrons inside a plastic structure, which increased the temperature about 3 ~C to 5 ~C above the external one. In the genotype N22, there was an increase (twofold higher) in CO2 assimilation in plants cultivated under elevated temperature (In). In BRS Quer^ncia, the stomatal conductance (gs) and transpiration rate (E) decreased upon high temperature. The rise in the temperature also negatively impacted in the modulated fluorescence parameters in both genotypes. Increases in root dry weight (RDW) and shoot dry weight (SDW) were also observed in the genotype N22 when compared to BRS Quer^ncia upon temperature rise. In general, the N22 genotype showed greater response to the above-optimal temperature due to its intrinsic thermotolerance traits over BRS Quer^ncia. Thus, N22 appeared as a potential donor of heat tolerance genes aiming to obtain new cultivar to face current global wanning.展开更多
Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oil...Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oils of all cultivated sage plants; the latter were found to be very rich in camphen, fl-thujone, a-pinene, eucaliptol, rich to moderate in β-pinene and camphor, and less rich in a-thujone and limonene. Sharp differences in chemical composition patterns and content of individual chemical compounds were noticed between and within cultivation sites. Cultivated sage was poorer in α-thujone versus wild plants. Cultivated sage, of Albanian wild plants origin, was the richest in α-thujone (18.45%) versus imported seeds sage. β-thujone over-dominated α-thujone in all cultivated sage plants. Volatile characters of cultivated sage were indicative of the species but not of the geographic origin of plant material. Variation in essential oils composition and chemical compounds' content (biosynthetic pathways) in cultivated sage is related more to the genetic background than the environmental factors. If cultivating sage in Albania, then wild local ecotypes would be best to use as α-thujone is maintained at satisfactory levels, local natural base is preserved, unnecessary hybridization with imported seeds sage is prevented, and are more resistant and cost effective.展开更多
文摘Temperature thresholds during the rice (Oryza sativa L.) cycle development have been reported to affect plant metabolism Therefore, this study aimed to evaluate the effects of the above-optimal temperature on photosynthetic and morphometric parameters in two contrasting irrigated rice genotypes (BRS Quer^ncia--sensitive and Nagina 22 (N22)~tolerant). Plants of both genotypes were grown in rhizotrons and always maintained under two temperature conditions: Out--under environmental temperature conditions, and In--rhizotrons inside a plastic structure, which increased the temperature about 3 ~C to 5 ~C above the external one. In the genotype N22, there was an increase (twofold higher) in CO2 assimilation in plants cultivated under elevated temperature (In). In BRS Quer^ncia, the stomatal conductance (gs) and transpiration rate (E) decreased upon high temperature. The rise in the temperature also negatively impacted in the modulated fluorescence parameters in both genotypes. Increases in root dry weight (RDW) and shoot dry weight (SDW) were also observed in the genotype N22 when compared to BRS Quer^ncia upon temperature rise. In general, the N22 genotype showed greater response to the above-optimal temperature due to its intrinsic thermotolerance traits over BRS Quer^ncia. Thus, N22 appeared as a potential donor of heat tolerance genes aiming to obtain new cultivar to face current global wanning.
文摘Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oils of all cultivated sage plants; the latter were found to be very rich in camphen, fl-thujone, a-pinene, eucaliptol, rich to moderate in β-pinene and camphor, and less rich in a-thujone and limonene. Sharp differences in chemical composition patterns and content of individual chemical compounds were noticed between and within cultivation sites. Cultivated sage was poorer in α-thujone versus wild plants. Cultivated sage, of Albanian wild plants origin, was the richest in α-thujone (18.45%) versus imported seeds sage. β-thujone over-dominated α-thujone in all cultivated sage plants. Volatile characters of cultivated sage were indicative of the species but not of the geographic origin of plant material. Variation in essential oils composition and chemical compounds' content (biosynthetic pathways) in cultivated sage is related more to the genetic background than the environmental factors. If cultivating sage in Albania, then wild local ecotypes would be best to use as α-thujone is maintained at satisfactory levels, local natural base is preserved, unnecessary hybridization with imported seeds sage is prevented, and are more resistant and cost effective.