[Objective] The aim of this study was to explore the differences in photosynthetic characteristics of Korla fragrant pear among different planting densities,providing a basis for the improvement of fruit yield and qua...[Objective] The aim of this study was to explore the differences in photosynthetic characteristics of Korla fragrant pear among different planting densities,providing a basis for the improvement of fruit yield and quality of Korla fragrant pear in production. [Method] The net photosynthetic rates, photoresponse curves and CO2 response curves of Korla fragrant pear under six different planting densities were determined using Li-6400 XT portable photosynthesis system. [Result] There were significant differences in photosynthetic parameters of Korla fragrant pear among six different planting densities. The net photosynthetic rate of Korla fragrant pear was highest under the planting density of 4.0 m × 6.0 m. At the planting density of4.0 m×6.0 m, when the light intensity reached 1 800 μmol/(m^2·s), the net photosynthetic rate of Korla fragrant pear reached the peak [19.326 μmol/(m^2·s)], and the apparent quantum yield, carboxylation efficiency and dark respiration rate all reached the maximum values; at the planting density of 6.0 m ×7.0 m, Korla fragrant pear showed lower light compensation point and CO2 compensation point, but higher light saturation point. At the planting density of 3.0 m ×5.0 m, Korla fragrant pear had higher light saturation point. [Conclusion] Among the six different planting densities,Korla fragrant pear with planting density of 4.0 m ×6.0 m showed the highest net photosynthetic rate. It suggested that Korla fragrant pear, at the planting density of4.0 m ×6.0 m, had stronger utilization capacity for low light and low-concentration CO2. Therefore, the Korla fragrant pear with the planting density of 4.0 m ×6.0 m has the highest photosynthesis efficiency, and the planting density of 4.0 m ×6.0 m is the most ideal planting density for Korla fragrant pear.展开更多
Content of macro- and microelements in plant and soil was studied after biochar, compost, digestate, lignite, and lignohumate application. Pot experiments were carried out in Phytotron CLF Plant Master (Wertingen, Ge...Content of macro- and microelements in plant and soil was studied after biochar, compost, digestate, lignite, and lignohumate application. Pot experiments were carried out in Phytotron CLF Plant Master (Wertingen, Germany). As tested plant lettuce (Lactucasativa) was used. Elemental composition was determined by AAS and XRF spectroscopy. Macronutrients content (Ca, Mg, K, and P) was determined by Mehlich III. Total content of carbon and nitrogen were determined by LECO TruSpec CN analyser. Results showed that different exogenous organic amendments statistically significantly influenced macro and micronutrients content in soil and plant. Satisfactory C/N ratio for soil microorganisms was measured only after compost and digestate application. As concerns hazardous elements, no legislation limits were overstepped after application of the tested organic amendments. Bioavailability and their uptake by plants followed the order: Cd 〉 Mn 〉 Zn 〉 Fe.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201304701)Key Discipline Fund of Pomology of Xinjiang Uygur Autonomous Region~~
文摘[Objective] The aim of this study was to explore the differences in photosynthetic characteristics of Korla fragrant pear among different planting densities,providing a basis for the improvement of fruit yield and quality of Korla fragrant pear in production. [Method] The net photosynthetic rates, photoresponse curves and CO2 response curves of Korla fragrant pear under six different planting densities were determined using Li-6400 XT portable photosynthesis system. [Result] There were significant differences in photosynthetic parameters of Korla fragrant pear among six different planting densities. The net photosynthetic rate of Korla fragrant pear was highest under the planting density of 4.0 m × 6.0 m. At the planting density of4.0 m×6.0 m, when the light intensity reached 1 800 μmol/(m^2·s), the net photosynthetic rate of Korla fragrant pear reached the peak [19.326 μmol/(m^2·s)], and the apparent quantum yield, carboxylation efficiency and dark respiration rate all reached the maximum values; at the planting density of 6.0 m ×7.0 m, Korla fragrant pear showed lower light compensation point and CO2 compensation point, but higher light saturation point. At the planting density of 3.0 m ×5.0 m, Korla fragrant pear had higher light saturation point. [Conclusion] Among the six different planting densities,Korla fragrant pear with planting density of 4.0 m ×6.0 m showed the highest net photosynthetic rate. It suggested that Korla fragrant pear, at the planting density of4.0 m ×6.0 m, had stronger utilization capacity for low light and low-concentration CO2. Therefore, the Korla fragrant pear with the planting density of 4.0 m ×6.0 m has the highest photosynthesis efficiency, and the planting density of 4.0 m ×6.0 m is the most ideal planting density for Korla fragrant pear.
文摘Content of macro- and microelements in plant and soil was studied after biochar, compost, digestate, lignite, and lignohumate application. Pot experiments were carried out in Phytotron CLF Plant Master (Wertingen, Germany). As tested plant lettuce (Lactucasativa) was used. Elemental composition was determined by AAS and XRF spectroscopy. Macronutrients content (Ca, Mg, K, and P) was determined by Mehlich III. Total content of carbon and nitrogen were determined by LECO TruSpec CN analyser. Results showed that different exogenous organic amendments statistically significantly influenced macro and micronutrients content in soil and plant. Satisfactory C/N ratio for soil microorganisms was measured only after compost and digestate application. As concerns hazardous elements, no legislation limits were overstepped after application of the tested organic amendments. Bioavailability and their uptake by plants followed the order: Cd 〉 Mn 〉 Zn 〉 Fe.