期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO的自然环境下桃子成熟度快速检测模型
1
作者
曾俊
陈仁凡
邹腾跃
《南方农机》
2023年第24期24-27,41,共5页
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间...
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间增加串联的CBAM卷积注意力模块和常规卷积块,增强对图像重要特征的捕捉与表达,同时引入SIoU损失函数缓解预测框与真实框之间方向的不匹配。【结果】改进后模型的m AP为88.6%,与YOLOv5s相比提升1个百分点,模型权重缩减39.4%,浮点运算量降低44.3%,在GPU、CPU上的单张图像平均检测时间分别减少12.6%和24%。此外,本研究将训练好的模型部署到嵌入式设备Jetson Nano上,模型在Jetson Nano上的检测时间比YOLOv5s减少30.4%。【结论】改进后的轻量级模型能够快速准确地检测自然环境下不同成熟度的桃子,可以为桃子采摘机器人的视觉识别系统提供技术支持。
展开更多
关键词
目标检测
桃子成熟度
YOLOv5s
FasterNet
注意力机制
快速识别
下载PDF
职称材料
题名
基于改进YOLO的自然环境下桃子成熟度快速检测模型
1
作者
曾俊
陈仁凡
邹腾跃
机构
福建农林大学机电工程学院
出处
《南方农机》
2023年第24期24-27,41,共5页
文摘
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间增加串联的CBAM卷积注意力模块和常规卷积块,增强对图像重要特征的捕捉与表达,同时引入SIoU损失函数缓解预测框与真实框之间方向的不匹配。【结果】改进后模型的m AP为88.6%,与YOLOv5s相比提升1个百分点,模型权重缩减39.4%,浮点运算量降低44.3%,在GPU、CPU上的单张图像平均检测时间分别减少12.6%和24%。此外,本研究将训练好的模型部署到嵌入式设备Jetson Nano上,模型在Jetson Nano上的检测时间比YOLOv5s减少30.4%。【结论】改进后的轻量级模型能够快速准确地检测自然环境下不同成熟度的桃子,可以为桃子采摘机器人的视觉识别系统提供技术支持。
关键词
目标检测
桃子成熟度
YOLOv5s
FasterNet
注意力机制
快速识别
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO的自然环境下桃子成熟度快速检测模型
曾俊
陈仁凡
邹腾跃
《南方农机》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部