In our synthetic studies toward huperzine A, a diastereoselective α'-alkylation of the α-amido-γ-methyl hexenone 4 was real- ized through a dianion intermediate which significantly enhanced the reactivity. Under t...In our synthetic studies toward huperzine A, a diastereoselective α'-alkylation of the α-amido-γ-methyl hexenone 4 was real- ized through a dianion intermediate which significantly enhanced the reactivity. Under the attempted Heck reaction conditions, an unexpected and unprecedented palladium-catalyzed intramolecular T-arylation of 3 was observed, which generated 18 with bicyclo[3.3, l]nonane framework in satisfactory yield.展开更多
With the rapid-growth-in-size scientific data in various disciplines, feature screening plays an important role to reduce the high-dimensionality to a moderate scale in many scientific fields. In this paper, we introd...With the rapid-growth-in-size scientific data in various disciplines, feature screening plays an important role to reduce the high-dimensionality to a moderate scale in many scientific fields. In this paper, we introduce a unified and robust model-free feature screening approach for high-dimensional survival data with censoring, which has several advantages: it is a model-free approach under a general model framework, and hence avoids the complication to specify an actual model form with huge number of candidate variables; under mild conditions without requiring the existence of any moment of the response, it enjoys the ranking consistency and sure screening properties in ultra-high dimension. In particular, we impose a conditional independence assumption of the response and the censoring variable given each covariate, instead of assuming the censoring variable is independent of the response and the covariates. Moreover, we also propose a more robust variant to the new procedure, which possesses desirable theoretical properties without any finite moment condition of the predictors and the response. The computation of the newly proposed methods does not require any complicated numerical optimization and it is fast and easy to implement. Extensive numerical studies demonstrate that the proposed methods perform competitively for various configurations. Application is illustrated with an analysis of a genetic data set.展开更多
In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed an...In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.展开更多
基金supported by the National Natural Science Foundation of China (20902101 & 21172246)National Basic Research Program of China (973 Program) (2010CB833206)
文摘In our synthetic studies toward huperzine A, a diastereoselective α'-alkylation of the α-amido-γ-methyl hexenone 4 was real- ized through a dianion intermediate which significantly enhanced the reactivity. Under the attempted Heck reaction conditions, an unexpected and unprecedented palladium-catalyzed intramolecular T-arylation of 3 was observed, which generated 18 with bicyclo[3.3, l]nonane framework in satisfactory yield.
基金supported by the Research Grant Council of Hong Kong (Grant Nos. 509413 and 14311916)Direct Grants for Research of The Chinese University of Hong Kong (Grant Nos. 3132754 and 4053235)+3 种基金the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB201024)the Key Science Fund Project of Jiangxi Province Eduction Department (Grant No. GJJ150439)National Natural Science Foundation of China (Grant Nos. 11461029, 11601197 and 61562030)the Canadian Institutes of Health Research (Grant No. 145546)
文摘With the rapid-growth-in-size scientific data in various disciplines, feature screening plays an important role to reduce the high-dimensionality to a moderate scale in many scientific fields. In this paper, we introduce a unified and robust model-free feature screening approach for high-dimensional survival data with censoring, which has several advantages: it is a model-free approach under a general model framework, and hence avoids the complication to specify an actual model form with huge number of candidate variables; under mild conditions without requiring the existence of any moment of the response, it enjoys the ranking consistency and sure screening properties in ultra-high dimension. In particular, we impose a conditional independence assumption of the response and the censoring variable given each covariate, instead of assuming the censoring variable is independent of the response and the covariates. Moreover, we also propose a more robust variant to the new procedure, which possesses desirable theoretical properties without any finite moment condition of the predictors and the response. The computation of the newly proposed methods does not require any complicated numerical optimization and it is fast and easy to implement. Extensive numerical studies demonstrate that the proposed methods perform competitively for various configurations. Application is illustrated with an analysis of a genetic data set.
文摘In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.