设 G 是一个简单图,(?)e=uv∈E(G),定义 e 的度 d(e)=dCu)+d(v),其中 d(u)和 d(v)分别为 u 和 v 的度数.本文得到了如下两个结果:1) 设 G 是 p≥3阶简单连通无桥图,G 不含 C_3和 C_4,若对 G 中任何相距为2的两边 e_0及 e_1,d(e_0) +d(e_...设 G 是一个简单图,(?)e=uv∈E(G),定义 e 的度 d(e)=dCu)+d(v),其中 d(u)和 d(v)分别为 u 和 v 的度数.本文得到了如下两个结果:1) 设 G 是 p≥3阶简单连通无桥图,G 不含 C_3和 C_4,若对 G 中任何相距为2的两边 e_0及 e_1,d(e_0) +d(e_1) ≥p+1,则 G 有一个生成闭迹.2) 设 G 是 P≥3阶简单连通无桥图,G 不含 C_3和 C_4若对任何相距为1两边 e_0及 e_1,d(e_0) +d(e_1) ≥p+2则 G 有一个生成闭迹.展开更多
In 1994, FAN and RASPAUD posed the following conjecture: every bridgeless cubic graph contains three perfect matchings M 1, M 2 and M 3 such that M 1∩M 2∩M 3=*I.In this paper we obtain the following result: l...In 1994, FAN and RASPAUD posed the following conjecture: every bridgeless cubic graph contains three perfect matchings M 1, M 2 and M 3 such that M 1∩M 2∩M 3=*I.In this paper we obtain the following result: let G be a cyclely-4-edge-connected cubic graph, which has a perfect matching M 1 such that G-M 1 consists of four odd cycles. Then G contains two perfect matchings M 2 and M 3 such that M 1∩M 2∩M 3=*I.展开更多
文摘设 G 是一个简单图,(?)e=uv∈E(G),定义 e 的度 d(e)=dCu)+d(v),其中 d(u)和 d(v)分别为 u 和 v 的度数.本文得到了如下两个结果:1) 设 G 是 p≥3阶简单连通无桥图,G 不含 C_3和 C_4,若对 G 中任何相距为2的两边 e_0及 e_1,d(e_0) +d(e_1) ≥p+1,则 G 有一个生成闭迹.2) 设 G 是 P≥3阶简单连通无桥图,G 不含 C_3和 C_4若对任何相距为1两边 e_0及 e_1,d(e_0) +d(e_1) ≥p+2则 G 有一个生成闭迹.
文摘In 1994, FAN and RASPAUD posed the following conjecture: every bridgeless cubic graph contains three perfect matchings M 1, M 2 and M 3 such that M 1∩M 2∩M 3=*I.In this paper we obtain the following result: let G be a cyclely-4-edge-connected cubic graph, which has a perfect matching M 1 such that G-M 1 consists of four odd cycles. Then G contains two perfect matchings M 2 and M 3 such that M 1∩M 2∩M 3=*I.